View text source at Wikipedia


Accelerated Linear Algebra

XLA (Accelerated Linear Algebra)
Developer(s)OpenXLA
Repositoryxla on GitHub
Written inC++
Operating systemLinux, macOS, Windows
Typecompiler
LicenseApache License 2.0
Websiteopenxla.org

XLA (Accelerated Linear Algebra) is an open-source compiler for machine learning developed by the OpenXLA project.[1] XLA is designed to improve the performance of machine learning models by optimizing the computation graphs at a lower level, making it particularly useful for large-scale computations and high-performance machine learning models. Key features of XLA include:[2]

XLA represents a significant step in optimizing machine learning models, providing developers with tools to enhance computational efficiency and performance.[3][4]

Supported target devices

[edit]

See also

[edit]

References

[edit]
  1. ^ "OpenXLA Project". Retrieved December 21, 2024.
  2. ^ Woodie, Alex (2023-03-09). "OpenXLA Delivers Flexibility for ML Apps". Datanami. Retrieved 2023-12-10.
  3. ^ "TensorFlow XLA: Accelerated Linear Algebra". TensorFlow Official Documentation. Retrieved 2023-12-10.
  4. ^ Smith, John (2022-07-15). "Optimizing TensorFlow Models with XLA". Journal of Machine Learning Research. 23: 45–60.
  5. ^ "intel/intel-extension-for-openxla". GitHub. Retrieved December 29, 2024.
  6. ^ "Accelerated JAX on Mac - Metal - Apple Developer". Retrieved December 29, 2024.
  7. ^ "Developer Guide for Training with PyTorch NeuronX — AWS Neuron Documentation". awsdocs-neuron.readthedocs-hosted.com. Retrieved 29 December 2024.
  8. ^ Barsoum, Emad (13 April 2022). "Supporting PyTorch on the Cerebras Wafer-Scale Engine - Cerebras". Cerebras. Retrieved 29 December 2024.
  9. ^ Ltd, Graphcore. "Poplar® Software". graphcore.ai. Retrieved 29 December 2024.
  10. ^ "PyTorch/XLA documentation — PyTorch/XLA master documentation". pytorch.org. Retrieved 29 December 2024.