In the framework of many-body quantum mechanics, models solvable by the Bethe ansatz can be contrasted with free fermion models. One can say that the dynamics of a free model is one-body reducible: the many-body wave function for fermions (bosons) is the anti-symmetrized (symmetrized) product of one-body wave functions. Models solvable by the Bethe ansatz are not free: the two-body sector has a non-trivial scattering matrix, which in general depends on the momenta.
On the other hand, the dynamics of the models solvable by the Bethe ansatz is two-body reducible: the many-body scattering matrix is a product of two-body scattering matrices. Many-body collisions happen as a sequence of two-body collisions and the many-body wave function can be represented in a form which contains only elements from two-body wave functions. The many-body scattering matrix is equal to the product of pairwise scattering matrices.
The generic form of the (coordinate) Bethe ansatz for a many-body wavefunction is
in which is the number of particles, their position, is the set of all permutations of the integers , is the parity of the permutation taking values either positive or negative one, is the (quasi-)momentum of the -th particle, is the scattering phase shift function and is the sign function. This form is universal (at least for non-nested systems), with the momentum and scattering functions being model-dependent.
A substantial generalization is the quantum inverse scattering method, or algebraic Bethe ansatz, which gives an ansatz for the underlying operator algebra that "has allowed a wide class of nonlinear evolution equations to be solved."[4]
The exact solutions of the so-called s-d model (by P.B. Wiegmann[5] in 1980 and independently by N. Andrei,[6] also in 1980) and the Anderson model (by P.B. Wiegmann[7] in 1981, and by N. Kawakami and A. Okiji[8] in 1981) are also both based on the Bethe ansatz. There exist multi-channel generalizations of these two models also amenable to exact solutions (by N. Andrei and C. Destri[9] and by C.J. Bolech and N. Andrei[10]). Recently several models solvable by Bethe ansatz were realized experimentally in solid states and optical lattices. An important role in the theoretical description of these experiments was played by Jean-Sébastien Caux and Alexei Tsvelik.[citation needed]
There are many similar methods which come under the name of Bethe ansatz
Algebraic Bethe ansatz.[11] The quantum inverse scattering method is the method of solution by algebraic Bethe ansatz, and the two are practically synonymous.
The Heisenberg antiferromagnetic chain is defined by the Hamiltonian (assuming periodic boundary conditions)
This model is solvable using the (coordinate) Bethe ansatz. The scattering phase shift function is , with in which the momentum has been conveniently reparametrized as in terms of the rapidity The (here, periodic) boundary conditions impose the Bethe equations
or more conveniently in logarithmic form
where the quantum numbers are distinct half-odd integers for even, integers for odd (with defined mod).
1930: Felix Bloch proposes an oversimplified ansatz which miscounts the number of solutions to the Schrödinger equation for the Heisenberg chain.[15]
1931: Hans Bethe proposes the correct ansatz and carefully shows that it yields the correct number of eigenfunctions.[1]
1938: Lamek Hulthén [de] obtains the exact ground-state energy of the Heisenberg model.[16]
1958: Raymond Lee Orbach uses the Bethe ansatz to solve the Heisenberg model with anisotropic interactions.[17]
1962: J. des Cloizeaux and J. J. Pearson obtain the correct spectrum of the Heisenberg antiferromagnet (spinon dispersion relation),[18] showing that it differs from Anderson’s spin-wave theory predictions[19] (the constant prefactor is different).
1963: Elliott H. Lieb and Werner Liniger provide the exact solution of the 1d δ-function interacting Bose gas[20] (now known as the Lieb-Liniger model). Lieb studies the spectrum and defines two basic types of excitations.[21]
1964: Robert B. Griffiths obtains the magnetization curve of the Heisenberg model at zero temperature.[22]
1966: C.N. Yang and C.P. Yang rigorously prove that the ground-state of the Heisenberg chain is given by the Bethe ansatz.[23] They study properties and applications in[24] and.[25]
1967: C.N. Yang generalizes Lieb and Liniger's solution of the δ-function interacting Bose gas to arbitrary permutation symmetry of the wavefunction, giving birth to the nested Bethe ansatz.[26]
^ ab
Bethe, H. (March 1931). "Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette". Zeitschrift für Physik. 71 (3–4): 205–226. doi:10.1007/BF01341708. S2CID124225487.
^Lieb, Elliott H.; Liniger, Werner (15 May 1963). "Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State". Physical Review. 130 (4): 1605–1616. Bibcode:1963PhRv..130.1605L. doi:10.1103/PhysRev.130.1605.
^Griffiths, Robert B. (3 February 1964). "Magnetization Curve at Zero Temperature for the Antiferromagnetic Heisenberg Linear Chain". Physical Review. 133 (3A): A768–A775. Bibcode:1964PhRv..133..768G. doi:10.1103/PhysRev.133.A768.
^Yang, C. N.; Yang, C. P. (7 October 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. I. Proof of Bethe's Hypothesis for Ground State in a Finite System". Physical Review. 150 (1): 321–327. Bibcode:1966PhRv..150..321Y. doi:10.1103/PhysRev.150.321.
^Yang, C. N.; Yang, C. P. (7 October 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System". Physical Review. 150 (1): 327–339. Bibcode:1966PhRv..150..327Y. doi:10.1103/PhysRev.150.327.
^Yang, C. N.; Yang, C. P. (4 November 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. III. Applications". Physical Review. 151 (1): 258–264. Bibcode:1966PhRv..151..258Y. doi:10.1103/PhysRev.151.258.
^Lieb, Elliott H.; Wu, F. Y. (17 June 1968). "Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension". Physical Review Letters. 20 (25): 1445–1448. Bibcode:1968PhRvL..20.1445L. doi:10.1103/PhysRevLett.20.1445.
^Yang, C. N.; Yang, C. P. (July 1969). "Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction". Journal of Mathematical Physics. 10 (7): 1115–1122. Bibcode:1969JMP....10.1115Y. doi:10.1063/1.1664947.