View text source at Wikipedia


Biological target

A biological target is anything within a living organism to which some other entity (like an endogenous ligand or a drug) is directed and/or binds, resulting in a change in its behavior or function. Examples of common classes of biological targets are proteins and nucleic acids. The definition is context-dependent, and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone (like insulin), or some other target of an external stimulus. Biological targets are most commonly proteins such as enzymes, ion channels, and receptors.

Mechanism

[edit]

The external stimulus (i.e., the drug or ligand) physically binds to ("hits") the biological target.[1][2] The interaction between the substance and the target may be:

Depending on the nature of the stimulus, the following can occur:[3]

Drug targets

[edit]

The term "biological target" is frequently used in pharmaceutical research to describe the native protein in the body whose activity is modified by a drug resulting in a specific effect, which may be a desirable therapeutic effect or an unwanted adverse effect. In this context, the biological target is often referred to as a drug target. The most common drug targets of currently marketed drugs include:[4][5][6]

Drug target identification

[edit]

Identifying the biological origin of a disease, and the potential targets for intervention, is the first step in the discovery of a medicine using the reverse pharmacology approach. Potential drug targets are not necessarily disease causing but must by definition be disease modifying.[8] An alternative means of identifying new drug targets is forward pharmacology based on phenotypic screening to identify "orphan" ligands[9] whose targets are subsequently identified through target deconvolution.[10][11][12]

Databases

[edit]

Databases containing biological targets information:

Conservation ecology

[edit]

These biological targets are conserved across species, making pharmaceutical pollution of the environment a danger to species who possess the same targets.[13] For example, the synthetic estrogen in human contraceptives, 17-R-ethinylestradiol, has been shown to increase the feminization of fish downstream from sewage treatment plants, thereby unbalancing reproduction and creating an additional selective pressure on fish survival.[14] Pharmaceuticals are usually found at ng/L to low-μg/L concentrations in the aquatic environment.[15] Adverse effects may occur in non-target species as a consequence of specific drug target interactions.[16] Therefore, evolutionarily well-conserved drug targets are likely to be associated with an increased risk for non-targeted pharmacological effects.[13]

See also

[edit]

References

[edit]
  1. ^ Raffa RB, Porreca F (1989). "Thermodynamic analysis of the drug-receptor interaction". Life Sciences. 44 (4): 245–58. doi:10.1016/0024-3205(89)90182-3. PMID 2536880.
  2. ^ Moy VT, Florin EL, Gaub HE (October 1994). "Intermolecular forces and energies between ligands and receptors". Science. 266 (5183): 257–9. Bibcode:1994Sci...266..257M. doi:10.1126/science.7939660. PMID 7939660.
  3. ^ Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G (2012). "Chapter 3: How drugs act: molecular aspects". Rang and Dale's Pharmacology. Edinburgh; New York: Elsevier/Churchill Livingstone. pp. 20–48. ISBN 978-0-7020-3471-8.
  4. ^ Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G (2012). "Chapter 2: How drugs act: general principles". Rang and Dale's Pharmacology. Edinburgh; New York: Elsevier/Churchill Livingstone. pp. 6–19. ISBN 978-0-7020-3471-8.
  5. ^ Overington JP, Al-Lazikani B, Hopkins AL (December 2006). "How many drug targets are there?". Nature Reviews. Drug Discovery. 5 (12): 993–6. doi:10.1038/nrd2199. PMID 17139284. S2CID 11979420.
  6. ^ Landry Y, Gies JP (February 2008). "Drugs and their molecular targets: an updated overview". Fundamental & Clinical Pharmacology. 22 (1): 1–18. doi:10.1111/j.1472-8206.2007.00548.x. PMID 18251718. S2CID 205630866.
  7. ^ Lundstrom K (2009). "An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs". G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology. Vol. 552. pp. 51–66. doi:10.1007/978-1-60327-317-6_4. ISBN 978-1-60327-316-9. PMC 7122359. PMID 19513641.
  8. ^ Dixon SJ, Stockwell BR (December 2009). "Identifying druggable disease-modifying gene products". Current Opinion in Chemical Biology. 13 (5–6): 549–55. doi:10.1016/j.cbpa.2009.08.003. PMC 2787993. PMID 19740696.
  9. ^ Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M (2017). "Opportunities and challenges in phenotypic drug discovery: an industry perspective". Nature Reviews. Drug Discovery. 16 (8): 531–543. doi:10.1038/nrd.2017.111. PMID 28685762. S2CID 6180139. Novelty of target and MoA [Mechanism of Action] is the second major potential advantage of PDD [Phenotypic Drug Discovery]. In addition to identifying novel targets, PDD can contribute to improvements over existing therapies by identifying novel physiology for a known target, exploring 'undrugged' targets that belong to well known drug target classes or discovering novel MoAs, including new ways of interfering with difficult-to-drug targets.
  10. ^ Lee H, Lee JW (2016). "Target identification for biologically active small molecules using chemical biology approaches". Archives of Pharmacal Research. 39 (9): 1193–201. doi:10.1007/s12272-016-0791-z. PMID 27387321. S2CID 13577563.
  11. ^ Lomenick B, Olsen RW, Huang J (January 2011). "Identification of direct protein targets of small molecules". ACS Chemical Biology. 6 (1): 34–46. doi:10.1021/cb100294v. PMC 3031183. PMID 21077692.
  12. ^ Jung HJ, Kwon HJ (2015). "Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery". Archives of Pharmacal Research. 38 (9): 1627–41. doi:10.1007/s12272-015-0618-3. PMID 26040984. S2CID 2399601.
  13. ^ a b Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DG (August 2008). "Evolutionary conservation of human drug targets in organisms used for environmental risk assessments". Environmental Science & Technology. 42 (15): 5807–5813. Bibcode:2008EnST...42.5807G. doi:10.1021/es8005173. PMID 18754513.
  14. ^ Larsson DG, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AM, Olsson PE, Förlin L (April 1999). "Ethinyloestradiol — an undesired fish contraceptive?". Aquatic Toxicology. 45 (2–3): 91–97. doi:10.1016/S0166-445X(98)00112-X.
  15. ^ Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007). "Repeating history: pharmaceuticals in the environment". Environmental Science & Technology. 41 (24): 8211–7. Bibcode:2007EnST...41.8211A. doi:10.1021/es072658j. PMID 18200843.
  16. ^ Kostich MS, Lazorchak JM (2008). "Risks to aquatic organisms posed by human pharmaceutical use". The Science of the Total Environment. 389 (2–3): 329–39. Bibcode:2008ScTEn.389..329K. doi:10.1016/j.scitotenv.2007.09.008. PMID 17936335.