In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set.[1][2]
A complete bipartite graph is a graph whose vertices can be partitioned into two subsets V1 and V2 such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph(V1, V2, E) such that for every two vertices v1 ∈ V1 andv2 ∈ V2, v1v2 is an edge in E. A complete bipartite graph with partitions of size |V1| = m and |V2| = n, is denoted Km,n;[1][2] every two graphs with the same notation are isomorphic.
The graph K3,3 is called the utility graph. This usage comes from a standard mathematical puzzle in which three utilities must each be connected to three buildings; it is impossible to solve without crossings due to the nonplanarity of K3,3.[6]
The maximal bicliques found as subgraphs of the digraph of a relation are called concepts. When a lattice is formed by taking meets and joins of these subgraphs, the relation has an Induced concept lattice. This type of analysis of relations is called formal concept analysis.
Regular complex polygons of the form 2{4}p have complete bipartite graphs with 2p vertices (red and blue) and p2 2-edges. They also can also be drawn as p edge-colorings.
Given a bipartite graph, testing whether it contains a complete bipartite subgraph Ki,i for a parameter i is an NP-complete problem.[8]
The complete bipartite graphs Kn,n and Kn,n+1 have the maximum possible number of edges among all triangle-free graphs with the same number of vertices; this is Mantel's theorem. Mantel's result was generalized to k-partite graphs and graphs that avoid larger cliques as subgraphs in Turán's theorem, and these two complete bipartite graphs are examples of Turán graphs, the extremal graphs for this more general problem.[11]
Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices.[15]