Corrole and porphyrins differ in several ways. Corroles are triprotic, whereas porphyrins are diprotic. Because of the 3- charge of the triply deprotonated ligand, metallocorroles are formally high-valent. Several are redox-noninnocent, with a corrole radical-dianion ligand.[2] A second difference between corroles and porphyrins is the size of the metal-binding cavity, i.e., 17- vs 18-membered rings. See "Porphyrins and similar compounds" in conjugated systems for more about these side by side images of porphyrin, chlorin, and corrin structures:
Corroles have been attached to a wide range of transition metals,[1][3]main group elements,[4] and lanthanides,[5]actinides.[6] and the diprotonated, neutral corrole radical.[7] Additionally, corroles and their metal complexes have been demonstrated to be useful as imaging agents in tumor detection,[8] oxygen sensing,[9] for prevention of heart disease,[10] in synthetic chemistry as oxo, imido, and nitrido transfer agents,[11] and as catalysts for the catalytic reduction of oxygen to water,[12] and hydrogen production form water under aerobic conditions.
Protein-corrole particles have been investigated as carriers of theranostic cargo for tumor targeting.[13]
^ abOrłowski, Rafał; Gryko, Dorota; Gryko, Daniel T. (2017). "Synthesis of Corroles and Their Heteroanalogs". Chemical Reviews. 117 (4): 3102–3137. doi:10.1021/acs.chemrev.6b00434. PMID27813401.
^Thomas, Kolle E.; Alemayehu, Abraham B.; Conradie, Jeanet; Beavers, Christine M.; Ghosh, Abhik (2012-08-21). "The Structural Chemistry of Metallocorroles: Combined X-ray Crystallography and Quantum Chemistry Studies Afford Unique Insights". Accounts of Chemical Research. 45 (8): 1203–1214. doi:10.1021/ar200292d. ISSN0001-4842. PMID22444488.
^Ghosh, Abhik (2017-02-22). "Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations". Chemical Reviews. 117 (4): 3798–3881. doi:10.1021/acs.chemrev.6b00590. ISSN0009-2665. PMID28191934.
^Aviv-Harel, I.; Gross, Z. (2010). "Coordination chemistry of corroles with focus on main group elements". Coord. Chem. Rev. 255 (7–8): 717–736. doi:10.1016/j.ccr.2010.09.013.
^Buckley, H. L.; Anstey, M. R.; Gryko, D. T.; Arnold, J. (2013). "Lanthanide corroles: a new class of macrocyclic lanthanide complexes". Chem. Commun. 49 (30): 3104–3106. doi:10.1039/c3cc38806a. PMID23467462.
^Ward, A. L.; Buckley, H. L.; Lukens, W. W.; Arnold, J. (2013). "Synthesis and Characterization of Thorium(IV) and Uranium(IV) Corrole Complexes". J. Am. Chem. Soc. 135 (37): 13965–13971. doi:10.1021/ja407203s. PMID24004416.
^Haber, Adi; Ali, A. A.-Y.; Aviram, M.; Gross, Z. (2013). "Allosteric inhibitors of HMG-CoA reductase, the key enzyme involved in cholesterol biosynthesis". Chem. Commun. 49 (93): 10917–10919. doi:10.1039/c3cc44740e. PMID23958894.
^Palmer, J. H. (2012). "Transition Metal Corrole Coordination Chemistry". Molecular Electronic Structures of Transition Metal Complexes I. Structure and Bonding. Vol. 142. pp. 49–90. doi:10.1007/430_2011_52. ISBN978-3-642-27369-8. {{cite book}}: |journal= ignored (help)
^Dogutan, D. K.; Stoian, S. A.; McGuire, R.; Schwalbe, M.; Teets, T. S.; Nocera, D. G. (2011). "Hangman Corroles: Efficient Synthesis and Oxygen Reaction Chemistry". J. Am. Chem. Soc. 133 (1): 131–140. doi:10.1021/ja108904s. PMID21142043.
^Teh, James; Kauwe, Lali Medina (2021). "Chapter 10. Magnetic Resonance Contrast Enhancement and Therapeutic Properties of Corrole Nanoparticles". Metal Ions in Bio-Imaging Techniques. Springer. pp. 299–314. doi:10.1515/9783110685701-016. S2CID233677374.