View text source at Wikipedia
Names | |
---|---|
IUPAC name
diethylzinc
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.008.330 |
EC Number |
|
PubChem CID
|
|
UNII | |
UN number | 1366 |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
(C2H5)2Zn | |
Molar mass | 123.50 g/mol |
Density | 1.205 g/mL |
Melting point | −28 °C (−18 °F; 245 K) |
Boiling point | 117 °C (243 °F; 390 K) |
Reacts | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards
|
Flammable and corrosive liquid, pyrophoric in air, may explode in contact with water. |
GHS labelling: | |
Danger | |
H225, H250, H260, H302+H312+H332, H314, H410 | |
P210, P222, P223, P231+P232, P233, P240, P241, P242, P243, P260, P264, P273, P280, P301+P330+P331, P302+P334, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P335+P334, P363, P370+P378, P391, P402+P404, P403+P235, P405, P422, P501 | |
NFPA 704 (fire diamond) | |
Safety data sheet (SDS) | External MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Diethylzinc (C2H5)2Zn, or DEZ, is a highly pyrophoric and reactive organozinc compound consisting of a zinc center bound to two ethyl groups. This colourless liquid is an important reagent in organic chemistry. It is available commercially as a solution in hexanes, heptane, or toluene, or as a pure liquid.
Edward Frankland first reported the compound in 1848 from zinc and ethyl iodide, the first organozinc compound discovered.[2][3] He improved the synthesis by using diethyl mercury as starting material.[4] The contemporary synthesis consists of the reaction of a 1:1 mixture of ethyl iodide and ethyl bromide with a zinc-copper couple, a source of reactive zinc.[5]
The compound crystallizes in a tetragonal body-centered unit cell of space group symmetry I41md. In the solid-state diethylzinc shows nearly linear Zn centres. The Zn-C bonds measure 194.8(5) pm, while the C-Zn-C angle is slightly bent with 176.2(4)°.[6] The structure of the gas-phase shows a very similar Zn-C distance (195.0(2) pm).[7]
Despite its highly pyrophoric nature, diethylzinc is an important chemical reagent. It is used in organic synthesis as a source of the ethyl carbanion in addition reactions to carbonyl groups. For example, the asymmetric addition of an ethyl group to benzaldehyde[8] and imines.[9] Additionally, it is commonly used in combination with diiodomethane as a Simmons-Smith reagent to convert alkenes into cyclopropyl groups.[10][11] It is less nucleophilic than related alkyllithium and Grignard reagents, so it may be used when a "softer" nucleophile is needed. It is also used extensively in materials science chemistry as a zinc source in the synthesis of nanoparticles. Particularly in the formation of the zinc sulfide shell for core/shell-type quantum dots.[12] While in polymer chemistry, it can be used as part of the catalyst for a chain shuttling polymerization reaction, whereby it participates in living polymerization.[13]
Diethylzinc is not limited to only being used in chemistry. Because of its high reactivity toward air, it was used in small quantities as a hypergolic or "self igniting" liquid rocket fuel[14]: 9 [15]: 323 —it ignites on contact with oxidizer, so the rocket motor need only contain a pump, without a spark source for ignition. Diethylzinc was also investigated by the United States Library of Congress as a potential means of mass deacidification of books printed on wood pulp paper. Diethylzinc vapour would, in theory, neutralize acid residues in the paper, leaving slightly alkaline zinc oxide residues. Although initial results were promising, the project was abandoned. A variety of adverse results prevented the method's adoption. Most infamously, the final prototype suffered damage in a series of diethylzinc explosions from trace amounts of water vapor in the chamber. This led the authors of the study to humorously comment:
It has also been established that tight or loose packing of books; the amount of alkaline reserve; reactions of DEZ with degradation products, unknown paper chemicals and adhesives; phases of the moon and the positions of various planets and constellations do not have any influence on the observed adverse effects of DEZ treatment.[16]
In microelectronics, diethylzinc is used as a doping agent.[citation needed]
For corrosion protection in nuclear reactors of the light water reactor design, depleted zinc oxide is produced by first passing diethylzinc through an enrichment centrifuge.
The pyrophoricity of diethylzinc can be used to test the inert atmosphere inside a glovebox. An oxygen concentration of only a few parts per million will cause a bottle of diethylzinc to fume when opened.[17]
Diethylzinc may explode when mixed with water and can spontaneously ignite upon contact with air. It should therefore be handled using air-free techniques.
{{cite journal}}
: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 10, p. 635.
{{cite journal}}
: CS1 maint: multiple names: authors list (link).
{{cite journal}}
: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 327.