View text source at Wikipedia
In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, where two seemingly-unrelated permutation classes have the same numbers of permutations of each length.
There are two symmetry classes and a single Wilf class for single permutations of length three.
β | sequence enumerating Avn(β) | OEIS | type of sequence | exact enumeration reference |
---|---|---|---|---|
1, 2, 5, 14, 42, 132, 429, 1430, ... | A000108 | algebraic (nonrational) g.f. Catalan numbers |
MacMahon (1916) Knuth (1968) |
There are seven symmetry classes and three Wilf classes for single permutations of length four.
β | sequence enumerating Avn(β) | OEIS | type of sequence | exact enumeration reference |
---|---|---|---|---|
1, 2, 6, 23, 103, 512, 2740, 15485, ... | A022558 | algebraic (nonrational) g.f. | Bóna (1997) | |
1, 2, 6, 23, 103, 513, 2761, 15767, ... | A005802 | holonomic (nonalgebraic) g.f. | Gessel (1990) | |
1324 | 1, 2, 6, 23, 103, 513, 2762, 15793, ... | A061552 |
No non-recursive formula counting 1324-avoiding permutations is known. A recursive formula was given by Marinov & Radoičić (2003). A more efficient algorithm using functional equations was given by Johansson & Nakamura (2014), which was enhanced by Conway & Guttmann (2015), and then further enhanced by Conway, Guttmann & Zinn-Justin (2018) who give the first 50 terms of the enumeration. Bevan et al. (2017) have provided lower and upper bounds for the growth of this class.
There are five symmetry classes and three Wilf classes, all of which were enumerated in Simion & Schmidt (1985).
B | sequence enumerating Avn(B) | OEIS | type of sequence |
---|---|---|---|
123, 321 | 1, 2, 4, 4, 0, 0, 0, 0, ... | n/a | finite |
213, 321 | 1, 2, 4, 7, 11, 16, 22, 29, ... | A000124 | polynomial, |
1, 2, 4, 8, 16, 32, 64, 128, ... | A000079 | rational g.f., |
There are eighteen symmetry classes and nine Wilf classes, all of which have been enumerated. For these results, see Atkinson (1999) or West (1996).
B | sequence enumerating Avn(B) | OEIS | type of sequence |
---|---|---|---|
321, 1234 | 1, 2, 5, 13, 25, 25, 0, 0, ... | n/a | finite |
321, 2134 | 1, 2, 5, 13, 30, 61, 112, 190, ... | A116699 | polynomial |
132, 4321 | 1, 2, 5, 13, 31, 66, 127, 225, ... | A116701 | polynomial |
321, 1324 | 1, 2, 5, 13, 32, 72, 148, 281, ... | A179257 | polynomial |
321, 1342 | 1, 2, 5, 13, 32, 74, 163, 347, ... | A116702 | rational g.f. |
321, 2143 | 1, 2, 5, 13, 33, 80, 185, 411, ... | A088921 | rational g.f. |
1, 2, 5, 13, 33, 81, 193, 449, ... | A005183 | rational g.f. | |
132, 3214 | 1, 2, 5, 13, 33, 82, 202, 497, ... | A116703 | rational g.f. |
321, 2341 |
1, 2, 5, 13, 34, 89, 233, 610, ... | A001519 | rational g.f., alternate Fibonacci numbers |
There are 56 symmetry classes and 38 Wilf equivalence classes. Only 3 of these remain unenumerated, and their generating functions are conjectured not to satisfy any algebraic differential equation (ADE) by Albert et al. (2018); in particular, their conjecture would imply that these generating functions are not D-finite.
Heatmaps of each of the non-finite classes are shown on the right. The lexicographically minimal symmetry is used for each class, and the classes are ordered in lexicographical order. To create each heatmap, one million permutations of length 300 were sampled uniformly at random from the class. The color of the point represents how many permutations have value at index . Higher resolution versions can be obtained at PermPal
B | sequence enumerating Avn(B) | OEIS | type of sequence | exact enumeration reference |
---|---|---|---|---|
4321, 1234 | 1, 2, 6, 22, 86, 306, 882, 1764, ... | A206736 | finite | Erdős–Szekeres theorem |
4312, 1234 | 1, 2, 6, 22, 86, 321, 1085, 3266, ... | A116705 | polynomial | Kremer & Shiu (2003) |
4321, 3124 | 1, 2, 6, 22, 86, 330, 1198, 4087, ... | A116708 | rational g.f. | Kremer & Shiu (2003) |
4312, 2134 | 1, 2, 6, 22, 86, 330, 1206, 4174, ... | A116706 | rational g.f. | Kremer & Shiu (2003) |
4321, 1324 | 1, 2, 6, 22, 86, 332, 1217, 4140, ... | A165524 | polynomial | Vatter (2012) |
4321, 2143 | 1, 2, 6, 22, 86, 333, 1235, 4339, ... | A165525 | rational g.f. | Albert, Atkinson & Brignall (2012) |
4312, 1324 | 1, 2, 6, 22, 86, 335, 1266, 4598, ... | A165526 | rational g.f. | Albert, Atkinson & Brignall (2012) |
4231, 2143 | 1, 2, 6, 22, 86, 335, 1271, 4680, ... | A165527 | rational g.f. | Albert, Atkinson & Brignall (2011) |
4231, 1324 | 1, 2, 6, 22, 86, 336, 1282, 4758, ... | A165528 | rational g.f. | Albert, Atkinson & Vatter (2009) |
4213, 2341 | 1, 2, 6, 22, 86, 336, 1290, 4870, ... | A116709 | rational g.f. | Kremer & Shiu (2003) |
4312, 2143 | 1, 2, 6, 22, 86, 337, 1295, 4854, ... | A165529 | rational g.f. | Albert, Atkinson & Brignall (2012) |
4213, 1243 | 1, 2, 6, 22, 86, 337, 1299, 4910, ... | A116710 | rational g.f. | Kremer & Shiu (2003) |
4321, 3142 | 1, 2, 6, 22, 86, 338, 1314, 5046, ... | A165530 | rational g.f. | Vatter (2012) |
4213, 1342 | 1, 2, 6, 22, 86, 338, 1318, 5106, ... | A116707 | rational g.f. | Kremer & Shiu (2003) |
4312, 2341 | 1, 2, 6, 22, 86, 338, 1318, 5110, ... | A116704 | rational g.f. | Kremer & Shiu (2003) |
3412, 2143 | 1, 2, 6, 22, 86, 340, 1340, 5254, ... | A029759 | algebraic (nonrational) g.f. | Atkinson (1998) |
1, 2, 6, 22, 86, 342, 1366, 5462, ... | A047849 | rational g.f. | Kremer & Shiu (2003) | |
4123, 2341 | 1, 2, 6, 22, 87, 348, 1374, 5335, ... | A165531 | algebraic (nonrational) g.f. | Atkinson, Sagan & Vatter (2012) |
4231, 3214 | 1, 2, 6, 22, 87, 352, 1428, 5768, ... | A165532 | algebraic (nonrational) g.f. | Miner (2016) |
4213, 1432 | 1, 2, 6, 22, 87, 352, 1434, 5861, ... | A165533 | algebraic (nonrational) g.f. | Miner (2016) |
1, 2, 6, 22, 87, 354, 1459, 6056, ... | A164651 | algebraic (nonrational) g.f. | Le (2005) established the Wilf-equivalence; Callan (2013a) determined the enumeration. | |
4312, 3124 | 1, 2, 6, 22, 88, 363, 1507, 6241, ... | A165534 | algebraic (nonrational) g.f. | Pantone (2017) |
4231, 3124 | 1, 2, 6, 22, 88, 363, 1508, 6255, ... | A165535 | algebraic (nonrational) g.f. | Albert, Atkinson & Vatter (2014) |
4312, 3214 | 1, 2, 6, 22, 88, 365, 1540, 6568, ... | A165536 | algebraic (nonrational) g.f. | Miner (2016) |
1, 2, 6, 22, 88, 366, 1552, 6652, ... | A032351 | algebraic (nonrational) g.f. | Bóna (1998) | |
4213, 2143 | 1, 2, 6, 22, 88, 366, 1556, 6720, ... | A165537 | algebraic (nonrational) g.f. | Bevan (2016b) |
4312, 3142 | 1, 2, 6, 22, 88, 367, 1568, 6810, ... | A165538 | algebraic (nonrational) g.f. | Albert, Atkinson & Vatter (2014) |
4213, 3421 | 1, 2, 6, 22, 88, 367, 1571, 6861, ... | A165539 | algebraic (nonrational) g.f. | Bevan (2016a) |
1, 2, 6, 22, 88, 368, 1584, 6968, ... | A109033 | algebraic (nonrational) g.f. | Le (2005) | |
4321, 3214 | 1, 2, 6, 22, 89, 376, 1611, 6901, ... | A165540 | algebraic (nonrational) g.f. | Bevan (2016a) |
4213, 3142 | 1, 2, 6, 22, 89, 379, 1664, 7460, ... | A165541 | algebraic (nonrational) g.f. | Albert, Atkinson & Vatter (2014) |
4231, 4123 | 1, 2, 6, 22, 89, 380, 1677, 7566, ... | A165542 | conjectured to not satisfy any ADE, see Albert et al. (2018) | |
4321, 4213 | 1, 2, 6, 22, 89, 380, 1678, 7584, ... | A165543 | algebraic (nonrational) g.f. | Callan (2013b); see also Bloom & Vatter (2016) |
4123, 3412 | 1, 2, 6, 22, 89, 381, 1696, 7781, ... | A165544 | algebraic (nonrational) g.f. | Miner & Pantone (2018) |
4312, 4123 | 1, 2, 6, 22, 89, 382, 1711, 7922, ... | A165545 | conjectured to not satisfy any ADE, see Albert et al. (2018) | |
4321, 4312 |
1, 2, 6, 22, 90, 394, 1806, 8558, ... | A006318 | Schröder numbers algebraic (nonrational) g.f. |
Kremer (2000), Kremer (2003) |
3412, 2413 | 1, 2, 6, 22, 90, 395, 1823, 8741, ... | A165546 | algebraic (nonrational) g.f. | Miner & Pantone (2018) |
4321, 4231 | 1, 2, 6, 22, 90, 396, 1837, 8864, ... | A053617 | conjectured to not satisfy any ADE, see Albert et al. (2018) |
The Database of Permutation Pattern Avoidance, maintained by Bridget Tenner, contains details of the enumeration of many other permutation classes with relatively few basis elements.