View text source at Wikipedia


February 1943 lunar eclipse

February 1943 lunar eclipse
Partial eclipse
The Moon's hourly motion shown right to left
DateFebruary 20, 1943
Gamma0.5752
Magnitude0.7616
Saros cycle132 (26 of 71)
Partiality189 minutes, 1 second
Penumbral345 minutes, 8 seconds
Contacts (UTC)
P12:45:21
U14:03:28
Greatest5:37:57
U47:12:29
P48:30:29

A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Saturday, February 20, 1943,[1] with an umbral magnitude of 0.7616. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 3.8 days after apogee (on February 16, 1943, at 9:00 UTC), the Moon's apparent diameter was smaller.[2]

Visibility

[edit]

The eclipse was completely visible over North and South America, seen rising over northeast Asia and the central Pacific Ocean and setting over Africa, Europe, and the Middle East.[3]

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

February 20, 1943 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 1.84442
Umbral Magnitude 0.76156
Gamma 0.57517
Sun Right Ascension 22h11m04.8s
Sun Declination -11°13'23.9"
Sun Semi-Diameter 16'10.5"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 10h11m38.1s
Moon Declination +11°43'51.2"
Moon Semi-Diameter 14'56.3"
Moon Equatorial Horizontal Parallax 0°54'49.3"
ΔT 25.9 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of February 1943
February 4
Descending node (new moon)
February 20
Ascending node (full moon)
Total solar eclipse
Solar Saros 120
Partial lunar eclipse
Lunar Saros 132
[edit]

Eclipses in 1943

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 132

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 1940–1944

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on April 22, 1940 and October 16, 1940 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on July 6, 1944 and December 29, 1944 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 1940 to 1944
Ascending node   Descending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
102 1940 Mar 23
Penumbral
−1.5034 107
112 1941 Mar 13
Partial
−0.8437 117 1941 Sep 05
Partial
0.9747
122 1942 Mar 03
Total
−0.1545 127 1942 Aug 26
Total
0.1818
132 1943 Feb 20
Partial
0.5752 137 1943 Aug 15
Partial
−0.5534
142 1944 Feb 09
Penumbral
1.2698 147 1944 Aug 04
Penumbral
−1.2843

Saros 132

[edit]

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 12, 1492. It contains partial eclipses from August 16, 1636 through March 24, 1997; total eclipses from April 4, 2015 through August 2, 2213; and a second set of partial eclipses from August 13, 2231 through November 30, 2411. The series ends at member 71 as a penumbral eclipse on June 26, 2754.

The longest duration of totality will be produced by member 36 at 106 minutes, 6 seconds on June 9, 2123. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First

The greatest eclipse of the series will occur on 2123 Jun 09, lasting 106 minutes, 6 seconds.[7]
Penumbral Partial Total Central
1492 May 12
1636 Aug 16
2015 Apr 04
2069 May 06
Last
Central Total Partial Penumbral
2177 Jul 11
2213 Aug 02
2411 Nov 30
2754 Jun 26

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1801 Mar 30
(Saros 119)
1812 Feb 27
(Saros 120)
1823 Jan 26
(Saros 121)
1833 Dec 26
(Saros 122)
1844 Nov 24
(Saros 123)
1855 Oct 25
(Saros 124)
1866 Sep 24
(Saros 125)
1877 Aug 23
(Saros 126)
1888 Jul 23
(Saros 127)
1899 Jun 23
(Saros 128)
1910 May 24
(Saros 129)
1921 Apr 22
(Saros 130)
1932 Mar 22
(Saros 131)
1943 Feb 20
(Saros 132)
1954 Jan 19
(Saros 133)
1964 Dec 19
(Saros 134)
1975 Nov 18
(Saros 135)
1986 Oct 17
(Saros 136)
1997 Sep 16
(Saros 137)
2008 Aug 16
(Saros 138)
2019 Jul 16
(Saros 139)
2030 Jun 15
(Saros 140)
2041 May 16
(Saros 141)
2052 Apr 14
(Saros 142)
2063 Mar 14
(Saros 143)
2074 Feb 11
(Saros 144)
2085 Jan 10
(Saros 145)
2095 Dec 11
(Saros 146)
2106 Nov 11
(Saros 147)
2117 Oct 10
(Saros 148)
2128 Sep 09
(Saros 149)
2139 Aug 10
(Saros 150)
2150 Jul 09
(Saros 151)
2161 Jun 08
(Saros 152)
2172 May 08
(Saros 153)
2194 Mar 07
(Saros 155)

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 139.

February 14, 1934 February 25, 1952

See also

[edit]
[edit]
  1. ^ "February 19–20, 1943 Partial Lunar Eclipse". timeanddate. Retrieved 19 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 19 December 2024.
  3. ^ "Partial Lunar Eclipse of 1943 Feb 20" (PDF). NASA. Retrieved 19 December 2024.
  4. ^ "Partial Lunar Eclipse of 1943 Feb 20". EclipseWise.com. Retrieved 19 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 132". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 132
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros