View text source at Wikipedia


Fibonacci word fractal

The Fibonacci word fractal is a fractal curve defined on the plane from the Fibonacci word.

Definition

[edit]
The first iterations
L-system representation[1]

This curve is built iteratively by applying the Odd–Even Drawing rule to the Fibonacci word 0100101001001...:

For each digit at position k:

  1. Draw a segment forward
  2. If the digit is 0:
    • Turn 90° to the left if k is even
    • Turn 90° to the right if k is odd

To a Fibonacci word of length (the nth Fibonacci number) is associated a curve made of segments. The curve displays three different aspects whether n is in the form 3k, 3k + 1, or 3k + 2.

Properties

[edit]
The Fibonacci numbers in the Fibonacci word fractal.

Some of the Fibonacci word fractal's properties include:[2][3]

[edit]

The Fibonacci tile

[edit]
Imperfect tiling by the Fibonacci tile. The area of the central square tends to infinity.

The juxtaposition of four curves allows the construction of a closed curve enclosing a surface whose area is not null. This curve is called a "Fibonacci tile".

Perfect tiling by the Fibonacci snowflake

Fibonacci snowflake

[edit]
Fibonacci snowflakes for i = 2 for n = 1 through 4: , , , [4]

The Fibonacci snowflake is a Fibonacci tile defined by:[5]

with and , "turn left" and "turn right", and .

Several remarkable properties:[5][6]

See also

[edit]

References

[edit]
  1. ^ Ramírez, José L.; Rubiano, Gustavo N. (2014). "Properties and Generalizations of the Fibonacci Word Fractal", The Mathematical Journal, Vol. 16.
  2. ^ Monnerot-Dumaine, Alexis (February 2009). "The Fibonacci word fractal", independent (hal.archives-ouvertes.fr).
  3. ^ Hoffman, Tyler; Steinhurst, Benjamin (2016). "Hausdorff Dimension of Generalized Fibonacci Word Fractals". arXiv:1601.04786 [math.MG].
  4. ^ Ramírez, Rubiano, and De Castro (2014). "A generalization of the Fibonacci word fractal and the Fibonacci snowflake", Theoretical Computer Science, Vol. 528, p.40-56. [1]
  5. ^ a b Blondin-Massé, Alexandre; Brlek, Srečko; Garon, Ariane; and Labbé, Sébastien (2009). "Christoffel and Fibonacci tiles", Lecture Notes in Computer Science: Discrete Geometry for Computer Imagery, p.67-8. Springer. ISBN 9783642043963.
  6. ^ A. Blondin-Massé, S. Labbé, S. Brlek, M. Mendès-France (2011). "Fibonacci snowflakes".
[edit]