View text source at Wikipedia


Frattini subgroup

Hasse diagram of the lattice of subgroups of the dihedral group Dih4. In the second row are the maximal subgroups; their intersection (the Frattini subgroup) is the central element in the third row. So Dih4 has only one non-generating element beyond e.

In mathematics, particularly in group theory, the Frattini subgroup of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group {e} or a Prüfer group, it is defined by . It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements" (see the "non-generator" characterization below). It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.[1]

Some facts

[edit]

An example of a group with nontrivial Frattini subgroup is the cyclic group G of order , where p is prime, generated by a, say; here, .

See also

[edit]

References

[edit]
  1. ^ Frattini, Giovanni (1885). "Intorno alla generazione dei gruppi di operazioni" (PDF). Accademia dei Lincei, Rendiconti. (4). I: 281–285, 455–457. JFM 17.0097.01.