The Hann function is named after the Austrian meteorologist Julius von Hann. It is a window function used to perform Hann smoothing.[1] The function, with length and amplitude is given by:
which is a sequence of samples, and can be even or odd. (see § Hann and Hamming windows) It is also known as the raised cosine window, Hann filter, von Hann window, etc.[2][3]
The Discrete-time Fourier transform (DTFT) of the length, time-shifted sequence is defined by a Fourier series, which also has a 3-term equivalent that is derived similarly to the Fourier transform derivation:
The truncated sequence is a DFT-even (aka periodic) Hann window. Since the truncated sample has value zero, it is clear from the Fourier series definition that the DTFTs are equivalent. However, the approach followed above results in a significantly different-looking, but equivalent, 3-term expression:
An N-length DFT of the window function samples the DTFT at frequencies for integer values of From the expression immediately above, it is easy to see that only 3 of the N DFT coefficients are non-zero. And from the other expression, it is apparent that all are real-valued. These properties are appealing for real-time applications that require both windowed and non-windowed (rectangularly windowed) transforms, because the windowed transforms can be efficiently derived from the non-windowed transforms by convolution.[4][c][d]
The function is named in honor of von Hann, who used the three-term weighted average smoothing technique on meteorological data.[5][2] However, the term Hanning function is also conventionally used,[6] derived from the paper in which the term hanning a signal was used to mean applying the Hann window to it.[7][8] The confusion arose from the similar Hamming function, named after Richard Hamming.
^
Essenwanger, O. M. (Oskar M.) (1986). Elements of statistical analysis. Elsevier. ISBN0444424261. OCLC152410575.
^ ab
Kahlig, Peter (1993), "Some aspects of Julius von Hann's contribution to modern climatology", in McBean, G.A.; Hantel, M. (eds.), Interactions Between Global Climate Subsystems: The Legacy of Hann, Geophysical Monograph Series, vol. 75, American Geophysical Union, pp. 1–7, doi:10.1029/gm075p0001, ISBN9780875904665, retrieved 2019-07-01, Hann appears to be the inventor of a certain data smoothing procedure, now called "hanning" ... or "Hann smoothing" ... Essentially, it is a three-term moving average (running mean) with unequal weights (1/4, 1/2, 1/4).
^
Smith, Julius O. (Julius Orion) (2011). Spectral audio signal processing. Stanford University. Center for Computer Research in Music and Acoustics., Stanford University. Department of Music. [Stanford, Calif.?]: W3K. ISBN9780974560731. OCLC776892709.
^
von Hann, Julius (1903). Handbook of Climatology. Macmillan. p. 199. The figures under b are determined by taking into account the parallels 5° away on either side. Thus, for example, for latitude 60° we have ½[60 + (65 + 55)÷2].