View text source at Wikipedia
leucine proline-enriched proteoglycan (leprecan) 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | LEPRE1 | ||||||
NCBI gene | 64175 | ||||||
HGNC | 19316 | ||||||
OMIM | 610339 | ||||||
PDB | 8K0M | ||||||
RefSeq | NM_022356 | ||||||
UniProt | Q32P28 | ||||||
Other data | |||||||
Locus | Chr. 1 p34.1 | ||||||
|
Leprecan is a protein associated with osteogenesis imperfecta[1] type VIII.
Leprecan is part of a superfamily of 2OG-Fe(II) dioxygenase, along with DNA repair protein AlkB, and disease resistant EGL-9. The enzyme was found to be a type of hydroxylases used in the substrate formation of protein glycosylation.[2]
Leprecan, a proteoglycan, has demonstrated prolyl hydroxylase activity; prolyl hydroxylases hydroxylate proline residues.[3] Prolyl 3-hydroxylase 1, P3H1, forms a larger complex with CRTAP and cyclophilin B, CyPB, in the endoplasimic reticulum. The complex hydroxylates a single proline residue, Pro986, on collagen chains.[4] Recessive forms of Osteogenesis Imperfecta are partly caused by a mutation in the LEPRE1 gene. The mutation in the gene encodes prolyl 3-hydroxylase 1. The malfunctioning prolyl 3-hydroxylase in leprecan leads to inappropriate collagen folding. This is due to the instability caused by the absence of hydroxyproline. Hydroxyproline is the product of hydroxylating a proline residue.[5]
Leprecan, also known as P3H1, forms a tight complex with CRTAP and cyclophilin B (PPIB), a collagen processing enzyme complex named PCP complex (P3H1-CRTAP-PPIB). Cryo-electron microscopy (cryo-EM) studies have revealed that the PCP complex consists of P3H1, CRTAP, and PPIB in a 1:1:1 stoichiometry.[6] The complex features a "face-to-face" spatial arrangement, with the prolyl hydroxylation site of the C-terminal domain of P3H1 and the prolyl isomerization site of PPIB positioned at the "top" of the complex. Below these dual-catalytic sites lies an X-shaped base formed by CRTAP and the N-terminal domain of P3H1, which exhibit similar 3D foldings. The surface of the PCP complex also harbors several potential collagen-binding sites, as indicated by EM density corresponding to a synthetic peptide with the COL1A1 sequence. Furthermore, the PCP complex has the ability to dimerize, forming a hexameric structure.