View text source at Wikipedia
The Media Transfer Protocol (MTP) is an extension to the Picture Transfer Protocol (PTP) communications protocol that allows media files to be transferred automatically to and from portable devices.[1] Whereas PTP was designed for downloading photographs from digital cameras, Media Transfer Protocol allows the transfer of music files on digital audio players and media files on portable media players, as well as personal information on personal digital assistants. MTP is a key part of WMDRM10-PD,[1] a digital rights management (DRM) service for the Windows Media platform. In 2011, it became the standard method to transfer files to and from Android.[2]
MTP is part of the "Windows Media" framework and thus closely related to Windows Media Player. Versions of the Microsoft Windows operating system from Windows XP SP2 support MTP. Windows XP requires Windows Media Player 10 or higher;[3] later Windows versions have built-in support. Microsoft has made an MTP Porting Kit available for older versions of Windows, back to Windows 98.
The USB Implementers Forum device working group standardized MTP as a full-fledged Universal Serial Bus (USB) device class in May 2008.[4] Since then, MTP is an official extension to PTP and shares the same class code.[5]
MTP is a high level file transfer protocol, as opposed to a general storage protocol like USB mass storage. That means that the MTP client (computer) does not see an array of byte blocks that makes up a data structure that makes up a file system, but instead speaks in terms of files and folders to the MTP device. This lets the MTP device take part in the high level operations (such as updating its metadata indexes) while keeping the integrity of its file system in its own hands. In particular, dropped transfers (such as by unplugging the USB cable too soon) do not corrupt the device file system.[6] The non-generality of MTP has consequences for how a computer operating system can present the MTP device, both to other programs and to the user.
According to its specification, the main purpose of MTP is to facilitate communication between media devices with transient connection.[5] A secondary purpose being to enable command and control of the connected device.[5] A battery-powered mobile device can report its battery charge level through MTP.[6]
The protocol was originally implemented for use across USB but extended for use across TCP/IP and Bluetooth. Windows Vista supports MTP over TCP/IP. Windows 7 and Windows Vista with the Platform Update for Windows Vista also support MTP over Bluetooth.[7] The host connecting to an MTP device is called an MTP Initiator, whereas the device itself is an MTP Responder.[8]
MTP allows MTP Initiators to identify the specific capabilities of device(s) with respect to file formats and functionality. In particular, MTP Initiators may have to provide passwords and other information to unlock files, or otherwise enable digital rights management. Nothing specific of this nature is in the core standard, but the features are available via vendor extensions. MTPZ, the Zune Extension to MTP, specifically denies access to files until authentication has been processed, which is only possible using Windows Media Player 10 or higher.
This section possibly contains original research. (November 2019) |
MTP's advantages are marked with "(+)" while disadvantages are marked with "(-)".
By not exposing the filesystem and metadata index, the integrity of these is in full control of the device.
(-) Windows does not assign drive letters or UNC paths to MTP devices because it does not natively expose them as virtual file systems. Without drive letters or UNC paths, MTP-unaware software cannot access directories or files on these devices. The user has to switch to an MTP-aware application, or else work around by using an MTP-aware application such as Windows Explorer to copy or move the file to a file system that the application can access.
One specific concern is that antivirus software on the host computer may not be aware of MTP devices, making them potentially less secure than mass storage devices (although if files on MTP devices are copied or moved to the host before use, MTP-unaware antivirus software will have a chance to scan them). Antivirus scanning might also be impractical due to blocking regular use of the device.
(-) Despite identifiability by the PTP/MTP USB device class, libmtp documentation indicates that the vendor and product ID combination plays a functional role in identifying an MTP device, also by Windows drivers.[13] Libmtp includes vast listings of vendor and product ID numbers of devices that it supports, along with workarounds for bugs.[14][15] This non-generic methodology hinders MTP drivers' forward compatibility with new devices.
The MTP specification includes an enumeration of file formats, called object format.[5] The use of this enumeration is in communicating supported file formats, and formats of transferred files. Apart from some uncategorized formats in the beginning, the list of formats is grouped in categories of image, audio, video and document formats, with each category having one "Undefined" format followed by specific formats. There is also a super-generic "Undefined object" format.
Jolla cited lack of WebM support in MTP as one reason not to support the video format in their mobile operating system Sailfish OS. It is unclear if the limitation is in the tools or the spec, other than that WebM is not defined by the MTP 1.1 spec.[16][unreliable source?][17]
These features can be used as more efficient alternatives to whole-file transfers and re-uploads:
From the MTP 1.1 spec:[5]
Opcode | Operation Name | Explanation |
---|---|---|
0x9805 | GetObjectPropList | Metadata transfer |
0x9806 | SetObjectPropList | |
0x1019 | MoveObject | Rename a file or directory |
0x101B | GetPartialObject | Request a byte range of a file |
According to go-mtpfs:[12]
Opcode | Operation Name | Explanation |
---|---|---|
0x95C1 | GetPartialObject64 | Same as GetPartialObject, but with 64 bit offset |
0x95C2 | SendPartialObject | Same as GetPartialObject64, but copying host to device |
0x95C3 | TruncateObject | Truncates file to 64 bit length |
0x95C4 | BeginEditObject | Must be called before using SendPartialObject and TruncateObject |
0x95C5 | EndEditObject | Called to commit changes made by SendPartialObject and TruncateObject |
MTP is supported in Windows XP if Windows Media Player 10 or later versions are installed. Windows Vista and later have MTP support built in. For older versions of Windows, specifically, Windows 2000, Windows 98 and Windows Me, Microsoft has released the MTP Porting Kit.[18] which contains a MTP device driver. Some manufacturers, such as Creative Technology, also provide legacy MTP drivers for some of their players; these usually consist of MTP Porting Kit files with a customized INF file describing their specific players.[citation needed]
Windows does not assign drive letters or UNC pathnames to devices connected via MTP; instead, they only appear as named devices in MTP-aware applications such as Windows Explorer. Compared to devices that implement USB mass storage, such devices cannot be accessed programmatically by scripts or normal Windows programs that depend on drive letters or UNC paths. Instead, files must be manipulated using Windows Explorer or applications with specially written MTP support.
Under Windows, MTP-compatible devices support a feature called Auto Sync, which lets users configure Windows Media Player to automatically transfer all copied or newly acquired content to devices whenever they are connected - provided that content is compatible with Windows Media Player. Auto Sync is customizable so that the player will transfer only content that meets certain criteria (songs rated four stars or higher, for instance). Changes made to file properties (such as a user rating and file playback counts) on a device can be propagated back to the computer when the device is reconnected.
Copies of files accessed over MTP may remain on the host computer even after reboot,[citation needed] where they will be accessible to the user account which accessed them, as well as any other user accounts able to read that user account's files, including any administrative users. Windows 7's sensor platform supports sensors built into MTP-compatible devices.[19]
In the implementation of MTP used by Windows Explorer, files from a selection moved out of a mobile device's storage, perhaps with the goal of freeing up space, are not deleted individually from the source after each file, but instead the entire selection becomes deleted at once from the source only after the transfer has finished.
As a result, file moves aborted untimely, whether manually or unexpectedly, will not have freed up any space on the source device.[20][21]
A free and open-source implementation of the Media Transfer Protocol is available as libmtp.[22] This library incorporates product and device IDs from many sources,[14] and is commonly used in other software for MTP support.
GNOME applications like GNOME Files (formerly called Nautilus) and Archive Manager (formerly called File-Roller) use GIO-based GVfs to access files on MTP devices. Proper MTP support was added to GVfs in version 1.15.2 (2013-01-15)[23] by Philip Langdale.[24][25] Early patches for GVfs to enable Google's direct I/O extensions are available.[26]
The KDE Project develops the MTP KIO Slave with a similar level of integration as GVfs.
Not related to GNOME or KDE is the *NIX graphical MTP-capable media player, gMTP.
Several tools provide a FUSE based file system for mounting MTP devices within the Unix filesystem hierarchy, making it accessible to any program that operates on files and directories.
macOS has built-in support for MTP (through the application "Image Capture"[27]) but no (third-party) drivers to mount MTP devices as drives. Also several third-party file transfer applications are available for Mac OS X v10.5 and later:
Later versions of several operating systems, including AmigaOS, Android, AROS, MorphOS, and Symbian OS support MTP, sometimes with additional drivers or software.
A disadvantage of MTP devices on Android as compared to USB mass storage is that although file timestamps are preserved when copying files from the Android device to one's computer, when copying in the other direction, the file modification timestamps are replaced with the time the copy was done.[34][35]
Companies, including Creative Technology, Intel, iriver, and Samsung Electronics, that manufacture devices based on Microsoft's "Portable Media Center specification", have widely adopted MTP. Supporting devices were introduced at the 2004 Consumer Electronics Show.
After an initial period of uncertain reactions, several large media player producers such as Creative Technology and iriver adopted the MTP protocol in place of their own protocols.
Many devices and audio software applications support MTP.
Devices need different PIDs for every alternative interface due to the Windows USB stack.