A morphism of schemes is called universally closed if for every scheme with a morphism , the projection from the fiber product
is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ([EGA] II, 5.4.1 [1]). One also says that is proper over . In particular, a variety over a field is said to be proper over if the morphism is proper.
For any natural number n, projective spacePn over a commutative ringR is proper over R. Projective morphisms are proper, but not all proper morphisms are projective. For example, there is a smooth proper complex variety of dimension 3 which is not projective over C.[1]Affine varieties of positive dimension over a field k are never proper over k. More generally, a proper affine morphism of schemes must be finite.[2] For example, it is not hard to see that the affine lineA1 over a field k is not proper over k, because the morphism A1 → Spec(k) is not universally closed. Indeed, the pulled-back morphism
(given by (x,y) ↦ y) is not closed, because the image of the closed subset xy = 1 in A1 × A1 = A2 is A1 − 0, which is not closed in A1.
Properties and characterizations of proper morphisms
In the following, let f: X → Y be a morphism of schemes.
The composition of two proper morphisms is proper.
Any base change of a proper morphism f: X → Y is proper. That is, if g: Z → Y is any morphism of schemes, then the resulting morphism X ×YZ → Z is proper.
Properness is a local property on the base (in the Zariski topology). That is, if Y is covered by some open subschemes Yi and the restriction of f to all f−1(Yi) is proper, then so is f.
More strongly, properness is local on the base in the fpqc topology. For example, if X is a scheme over a field k and E is a field extension of k, then X is proper over k if and only if the base change XE is proper over E.[3]
For X proper over a scheme S, and Y separated over S, the image of any morphism X → Y over S is a closed subset of Y.[6] This is analogous to the theorem in topology that the image of a continuous map from a compact space to a Hausdorff space is a closed subset.
The Stein factorization theorem states that any proper morphism to a locally noetherian scheme can be factored as X → Z → Y, where X → Z is proper, surjective, and has geometrically connected fibers, and Z → Y is finite.[7]
Chow's lemma says that proper morphisms are closely related to projective morphisms. One version is: if X is proper over a quasi-compact scheme Y and X has only finitely many irreducible components (which is automatic for Y noetherian), then there is a projective surjective morphism g: W → X such that W is projective over Y. Moreover, one can arrange that g is an isomorphism over a dense open subset U of X, and that g−1(U) is dense in W. One can also arrange that W is integral if X is integral.[8]
Nagata's compactification theorem, as generalized by Deligne, says that a separated morphism of finite type between quasi-compact and quasi-separated schemes factors as an open immersion followed by a proper morphism.[9]
Proper morphisms between locally noetherian schemes preserve coherent sheaves, in the sense that the higher direct imagesRif∗(F) (in particular the direct imagef∗(F)) of a coherent sheafF are coherent (EGA III, 3.2.1). (Analogously, for a proper map between complex analytic spaces, Grauert and Remmert showed that the higher direct images preserve coherent analytic sheaves.) As a very special case: the ring of regular functions on a proper scheme X over a field k has finite dimension as a k-vector space. By contrast, the ring of regular functions on the affine line over k is the polynomial ring k[x], which does not have finite dimension as a k-vector space.
There is also a slightly stronger statement of this:(EGA III, 3.2.4) let be a morphism of finite type, S locally noetherian and a -module. If the support of F is proper over S, then for each the higher direct image is coherent.
For a scheme X of finite type over the complex numbers, the set X(C) of complex points is a complex analytic space, using the classical (Euclidean) topology. For X and Y separated and of finite type over C, a morphism f: X → Y over C is proper if and only if the continuous map f: X(C) → Y(C) is proper in the sense that the inverse image of every compact set is compact.[10]
If f: X→Y and g: Y→Z are such that gf is proper and g is separated, then f is proper. This can for example be easily proven using the following criterion.
There is a very intuitive criterion for properness which goes back to Chevalley. It is commonly called the valuative criterion of properness. Let f: X → Y be a morphism of finite type of Noetherian schemes. Then f is proper if and only if for all discrete valuation ringsR with fraction fieldK and for any K-valued point x ∈ X(K) that maps to a point f(x) that is defined over R, there is a unique lift of x to . (EGA II, 7.3.8). More generally, a quasi-separated morphism f: X → Y of finite type (note: finite type includes quasi-compact) of 'any' schemes X, Y is proper if and only if for all valuation ringsR with fraction fieldK and for any K-valued point x ∈ X(K) that maps to a point f(x) that is defined over R, there is a unique lift of x to . (Stacks project Tags 01KF and 01KY). Noting that Spec K is the generic point of Spec R and discrete valuation rings are precisely the regularlocal one-dimensional rings, one may rephrase the criterion: given a regular curve on Y (corresponding to the morphism s: Spec R → Y) and given a lift of the generic point of this curve to X, f is proper if and only if there is exactly one way to complete the curve.
Similarly, f is separated if and only if in every such diagram, there is at most one lift .
For example, given the valuative criterion, it becomes easy to check that projective space Pn is proper over a field (or even over Z). One simply observes that for a discrete valuation ring R with fraction field K, every K-point [x0,...,xn] of projective space comes from an R-point, by scaling the coordinates so that all lie in R and at least one is a unit in R.
One of the motivating examples for the valuative criterion of properness is the interpretation of as an infinitesimal disk, or complex-analytically, as the disk . This comes from the fact that every power series
converges in some disk of radius around the origin. Then, using a change of coordinates, this can be expressed as a power series on the unit disk. Then, if we invert , this is the ring which are the power series which may have a pole at the origin. This is represented topologically as the open disk with the origin removed. For a morphism of schemes over , this is given by the commutative diagram
Then, the valuative criterion for properness would be a filling in of the point in the image of .
It's instructive to look at a counter-example to see why the valuative criterion of properness should hold on spaces analogous to closed compact manifolds. If we take and , then a morphism factors through an affine chart of , reducing the diagram to
where is the chart centered around on . This gives the commutative diagram of commutative algebras
Then, a lifting of the diagram of schemes, , would imply there is a morphism sending from the commutative diagram of algebras. This, of course, cannot happen. Therefore is not proper over .
There is another similar example of the valuative criterion of properness which captures some of the intuition for why this theorem should hold. Consider a curve and the complement of a point . Then the valuative criterion for properness would read as a diagram
with a lifting of . Geometrically this means every curve in the scheme can be completed to a compact curve. This bit of intuition aligns with what the scheme-theoretic interpretation of a morphism of topological spaces with compact fibers, that a sequence in one of the fibers must converge. Because this geometric situation is a problem locally, the diagram is replaced by looking at the local ring , which is a DVR, and its fraction field . Then, the lifting problem then gives the commutative diagram
where the scheme represents a local disk around with the closed point removed.
Let be a morphism between locally noetherian formal schemes. We say f is proper or is proper over if (i) f is an adic morphism (i.e., maps the ideal of definition to the ideal of definition) and (ii) the induced map is proper, where and K is the ideal of definition of .(EGA III, 3.4.1) The definition is independent of the choice of K.
For example, if g: Y → Z is a proper morphism of locally noetherian schemes, Z0 is a closed subset of Z, and Y0 is a closed subset of Y such that g(Y0) ⊂ Z0, then the morphism on formal completions is a proper morphism of formal schemes.
Grothendieck proved the coherence theorem in this setting. Namely, let be a proper morphism of locally noetherian formal schemes. If F is a coherent sheaf on , then the higher direct images are coherent.[11]