A column can buckle due to its own weight with no other direct forces acting on it, in a failure mode called self-buckling. In conventional column buckling problems, the self-weight is often neglected since it is assumed to be small when compared to the applied axial loads. However, when the weight of the column is significant compared to its buckling strength, it is important to take self-buckling into account.
Elastic buckling of a "heavy" column i.e., column buckling under its own weight, was first investigated by Greenhill in 1881.[1] He found that a free-standing, vertical column, with density, Young's modulus, and cross-sectional area, will buckle under its own weight if its height exceeds a certain critical value:
One interesting example for the use of the equation was suggested by Greenhill in his paper. He estimated the maximal height of a pinetree, and found it cannot grow over 300 feet (90 m) tall. This length sets the maximum height for trees on earth if we assume the trees to be prismatic and the branches are neglected.
Suppose a uniform column fixed in a vertical direction at its lowest point, and carried to a height , in which the vertical position becomes unstable and flexure begins. There is a body force per unit length , where is the cross-sectional area of the column, is the acceleration due to gravity and is its mass density.
The column is slightly curved under its own weight, so the curve describes the deflection of the beam in the direction at some position . Looking at any point on the column, we can write the moment equilibrium:
where the right-hand side of the equation is the moment of the weight of BP about P.
We get that the governing equation is the third order linear differential equation with a variable coefficient. The way to solve the problem is to use new variables and :
The column under its own weight was considered by Euler in three famous papers (1778a, 1778b, 1778c).[2][3][4] In his first paper, Euler (1778a) concluded that the column simply supported under its own weight would never lose its stability. In his second paper on this topic Euler (1778b) described his previous result as paradoxical and suspicious (see Panovko and Gubanova (1965); Nicolai, (1955);[5] Todhunter and Pierson (1866)[6] on this topic). In the next, third in series, paper, Euler (1778c) found that he had made a conceptual mistake and the “infinite buckling load” conclusion was proved to be wrong. Unfortunately, however, he made a numerical mistake and instead of the first eigenvalue, he calculated a second one. Correct solutions were derived by Dinnik (1912),[7] 132 years later, as well as Willers (1941),[8] Engelhardt (1954)[9] and Frich-Fay (1966).[10] Numerical solution with arbitrary accuracy was given by Eisenberger (1991).[11]
222 years after Euler's mistake in 1778, Elishakoff [12][13] revisited this problem and derived closed-form solutions for self-buckling problems.[14]
^Euler, L. (1778a) Determinatio onerum, quae columnae gestare valent, Acta Academiae Scientiarum Petropolitanae, Vol. 1, 121-145 (in Latin).
^Euler, L. (1778b) Examen insignis puradoxi in theoria columnarum occurentis, Acta Academiae Scientiarum Petropolitanae, Vol. 1, 146-162 (in Latin).
^Euler, L. (1778c) De Altitudine columnarum sub proprio pondere corruentium, Acta Academiae Scientiarum Petropolitanae, Vol. 1, 163-193 (in Latin).
^Nicolai, E.V., Works in Mechanics, pp.436-454, Gostekhizdat, Moscow, 1955 (in Russian).
^Todhunter, I. and Pearson K., History of the Theory of Elasticity, Vol. 1, pp. 39-50. Cambridge University Press, 1886.
^Dinnik, A.N., Buckling under Own Weight, Proceedings of Don Polytechnical Institute 1 (Part 2), p. 19, 1912 (in Russian).
^Willers, F.A., Das Knicken schwerer Gestänge, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 21(1),(1941) 43–51 (in German).
^Engelhardt, H., Die einheitliche Behandlung der Stabknickung mit Beruecksichtung des Stabeigengewichte in den Eulerfaellen 1 bis 4 als Eigenwertproblem, Der Stahlbau, Vol. 23 (4),80–84, 1954 (in German).
^Frich-Fay, R., On the Stability of a Strut under Uniformly Distributed Axial Forces, Int. J. Solids Struct., Vol. 2, 361–369, 1966.
^Eisenberger, M., Buckling Loads for Variable Cross-Section Member with Variable Axial Forces, Int. J. Solids Struct., Vol. 27, 135–143, 1991.
^Elishakoff, I., A Closed Form-Solution for Generalized Euler Problem, Proc. Royal Soc. London, Vol. 456, 2409–2417, 2000.
^Elishakoff, I., Euler's Problem Revisited: 222 Years Later, Meccanica, Vol. 36, 265-272, 2001.
^Elishakoff, I., Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions of Semi-Inverse Problems, CRC Press, Boca Raton, 2005, XIV + pp. 729; ISBN0-8493-2892-6.