The Siegel modular variety Ag, which parametrize principally polarized abelian varieties of dimension g, can be constructed as the complex analytic spaces constructed as the quotient of the Siegel upper half-space of degree g by the action of a symplectic group. Complex analytic spaces have naturally associated algebraic varieties by Serre's GAGA.[1]
The Siegel modular variety Ag(n), which parametrize principally polarized abelian varieties of dimension g with a level n-structure, arises as the quotient of the Siegel upper half-space by the action of the principal congruence subgroup of level n of a symplectic group.[1]
A Siegel modular variety may also be constructed as a Shimura variety defined by the Shimura datum associated to a symplectic vector space.[4]
Siegel modular forms arise as vector-valued differential forms on Siegel modular varieties.[1] Siegel modular varieties have been used in conformal field theory via the theory of Siegel modular forms.[11] In string theory, the function that naturally captures the microstates of black hole entropy in the D1D5P system of supersymmetric black holes is a Siegel modular form.[5]
In 1968, Aleksei Parshin showed that the Mordell conjecture (now known as Faltings's theorem) would hold if the Shafarevich finiteness conjecture was true by introducing Parshin's trick.[12][13] In 1983 and 1984, Gerd Faltings completed the proof of the Mordell conjecture by proving the Shafarevich finiteness conjecture.[14][15][13] The main idea of Faltings' proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.[16]
^Oda, Takayuki (2014). "Intersections of Two Walls of the Gottschling Fundamental Domain of the Siegel Modular Group of Genus Two". In Heim, Bernhard; Al-Baali, Mehiddin; Rupp, Florian (eds.). Automorphic Forms, Research in Number Theory from Oman. Springer Proceedings in Mathematics & Statistics. Vol. 115. Springer. pp. 193–221. doi:10.1007/978-3-319-11352-4_15. ISBN978-3-319-11352-4.
^Siegel, Carl Ludwig (1943). "Symplectic Geometry". American Journal of Mathematics. 65 (1). The Johns Hopkins University Press: 1–86. doi:10.2307/2371774. JSTOR2371774.
^ abMilne, James S. (2005). "Introduction to Shimura Varieties"(PDF). In Arthur, James; Ellwood, David; Kottwitz, Robert (eds.). Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Mathematics Proceedings. Vol. 4. American mathematical Society and Clay Mathematics Institute. pp. 265–378. ISBN978-0-8218-3844-0.
^van der Geer, Gerard (2013). "The cohomology of the moduli space of Abelian varieties". In Farkas, Gavril; Morrison, Ian (eds.). The Handbook of Moduli, Volume 1. Vol. 24. Somerville, Mass.: International Press. arXiv:1112.2294. ISBN9781571462572.
^Mumford, David (1983). "On the Kodaira dimension of the Siegel modular variety". In Ciliberto, C.; Ghione, F.; Orecchia, F. (eds.). Algebraic Geometry - Open Problems, Proceedings of the Conference held in Ravello, May 31 - June 5, 1982. Lecture Notes in Mathematics. Vol. 997. Springer. pp. 348–375. doi:10.1007/BFb0061652. ISBN978-3-540-12320-0.
^Ihara, Yasutaka; Nakamura, Hiroaki (1997). "Some illustrative examples for anabelian geometry in high dimensions". In Schneps, Leila; Lochak, Pierre (eds.). Geometric Galois Actions 1: Around Grothendieck's Esquisse d'un Programme. London Mathematical Society Lecture Note Series. Vol. 242. Cambridge University Press. pp. 127–138. doi:10.1017/CBO9780511758874.010. ISBN978-0-521-59642-8.