Property of group subsets (mathematics)
In mathematics , a nonempty subset S of a group G is said to be symmetric if it contains the inverses of all of its elements.
In set notation a subset
S
{\displaystyle S}
of a group
G
{\displaystyle G}
is called symmetric if whenever
s
∈
S
{\displaystyle s\in S}
then the inverse of
s
{\displaystyle s}
also belongs to
S
.
{\displaystyle S.}
So if
G
{\displaystyle G}
is written multiplicatively then
S
{\displaystyle S}
is symmetric if and only if
S
=
S
−
1
{\displaystyle S=S^{-1}}
where
S
−
1
:=
{
s
−
1
:
s
∈
S
}
.
{\displaystyle S^{-1}:=\left\{s^{-1}:s\in S\right\}.}
If
G
{\displaystyle G}
is written additively then
S
{\displaystyle S}
is symmetric if and only if
S
=
−
S
{\displaystyle S=-S}
where
−
S
:=
{
−
s
:
s
∈
S
}
.
{\displaystyle -S:=\{-s:s\in S\}.}
If
S
{\displaystyle S}
is a subset of a vector space then
S
{\displaystyle S}
is said to be a symmetric set if it is symmetric with respect to the additive group structure of the vector space; that is, if
S
=
−
S
,
{\displaystyle S=-S,}
which happens if and only if
−
S
⊆
S
.
{\displaystyle -S\subseteq S.}
The symmetric hull of a subset
S
{\displaystyle S}
is the smallest symmetric set containing
S
,
{\displaystyle S,}
and it is equal to
S
∪
−
S
.
{\displaystyle S\cup -S.}
The largest symmetric set contained in
S
{\displaystyle S}
is
S
∩
−
S
.
{\displaystyle S\cap -S.}
Sufficient conditions [ edit ]
Arbitrary unions and intersections of symmetric sets are symmetric.
Any vector subspace in a vector space is a symmetric set.
In
R
,
{\displaystyle \mathbb {R} ,}
examples of symmetric sets are intervals of the type
(
−
k
,
k
)
{\displaystyle (-k,k)}
with
k
>
0
,
{\displaystyle k>0,}
and the sets
Z
{\displaystyle \mathbb {Z} }
and
(
−
1
,
1
)
.
{\displaystyle (-1,1).}
If
S
{\displaystyle S}
is any subset of a group, then
S
∪
S
−
1
{\displaystyle S\cup S^{-1}}
and
S
∩
S
−
1
{\displaystyle S\cap S^{-1}}
are symmetric sets.
Any balanced subset of a real or complex vector space is symmetric.
R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977.
Rudin, Walter (1991). Functional Analysis . International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math . ISBN 978-0-07-054236-5 . OCLC 21163277 .
Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces . Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666 . OCLC 144216834 .
Schaefer, Helmut H. ; Wolff, Manfred P. (1999). Topological Vector Spaces . GTM . Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0 . OCLC 840278135 .
Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels . Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1 . OCLC 853623322 .
This article incorporates material from symmetric set on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics