View text source at Wikipedia
This is an archive of past discussions about Wankel engine. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. |
Archive 1 |
I came to this page to state that the wankel uses the Otto cycle but I see someone beat me to it. I agree completely with the comment below. The offending line should be changed to "lower than that of more common piston engines" or something. I don't know enough about their relative efficiencies to make it myself. —Preceding unsigned comment added by 68.52.34.198 (talk) 22:00, 10 November 2007 (UTC)
Hi, i would also like to point out what to me seems to be a mistake. I'm refering to the paragraph in the disadvantages section where the fuel efficiency of the wankel engine is rated as lower that that of the "otto cycle" engine.. As far as i know, despite being a different design than most otto cycle engines witch use pistons, the wankel engine is still an otto engine, as it has the same four strokes (intake, compression, ignition exhaust) as any other otto engine. therefore i sugest replacing the term otto engine with piston engine, or maybe reciprocating engine
This article and the article on the inventor disagree on his country of origin. —Preceding unsigned comment added by Fountainmon (talk • contribs) 08:48, 2 September 2007 (UTC)
soviets also produced rotary/wankel engines, look up Vaz 311. as its pretty bizarre, it should be mentioned :) http://cp_www.tripod.com/rotary/pg07.htm Savuporo 20:01, 11 April 2007 (UTC)
Racing section has turned into Mazda racing, and I'll get around to moving most of it there pretty soon. Gzuckier 18:44, 8 Mar 2005 (UTC)
The RX-8 has not yet been launched, it is supposed to be released May or June 2003, as a 2004 model, the article states it came out in 2002.
rotarygod.com
Never mind, it turns out that http://encyclopedia.thefreedictionary.com/Wankel%20engine was taken from wikipedia. Some of the technical stuff here was just wrong.Gzuckier 18:43, 20 Jul 2004 (UTC)
Here we are in 2008. Automobile Racing isn't the only use for Wankels in cars. Can we get a new section or at least fix this article? --68.221.168.154 (talk) 00:34, 21 July 2008 (UTC)
I ran across a public-domain animation of the rotor (not the cycle) on the German Wikipedia, and stuck it in the commons: Image:Wankel_anim.gif. It's illustrative, but is really driving me batty.
Any thoughts on whether or not it should be included? --Milkmandan 06:17, 2005 Mar 8 (UTC)
I am sure the centre shaft is rotating the wrong way on the animation, I am sure it rotates in the opposite direction to the apex. please correct me if I am wrong. Rapidlaser 15:17, 10 May 2007 (UTC)
Hi, I'm the administrator for Rotary Engine Illustrated. http://www.rotaryengineillustrated.com, I'd like to post some of my animations, that I own outright and put them on the website but not make them avaliable for anyone to download. Can I do this?
please contact me at kazisdaman2@hotmail.com, if I can share the animations with wikipedia. —Preceding unsigned comment added by 24.22.98.127 (talk • contribs)
I'm surprised there isn't a reference to the Monty Python sketch "Are You Embarassed Easily?" I'm sure many geeks (non-gearhead geeks, that is) are familiar with this only as a reference in the sketch.
I'm not sure the "Note about emissions & fuel consumption" really meets the neutral point-of-view standard. It seems to be stuck in there without really adding information, run against conventional wisdom and is a clearly pro-rotary viewpoint. It's argumentative, not informative. 207.171.180.101 17:10, 19 April 2006 (UTC)
--Actually, it's both argumentative and informative at the same time. It needs to be cleaned up a little, but it is quite true; you cannot compare a RENESIS motor's fuel consumption with either a pistoned engine of the same displacement or a pistoned engine designed for economical operation. A 1.3 litre Wankel is best compared to a 2.6 litre performance piston engine in terms of fuel economy. Also, fuel economy is directly related to how you drive; high power 13B turbocharged motors can pull 30 mpg if driven carefully, while you can get less than 5 mpg if you beat on a RENESIS.
It might be true. I'm quite sure that if you turbocharged a 1.3 piston engine and boosted the power output to 230BHP you'd be looking at GPM, not MPG (smile). But I don't know of any factory-fitted engines that fit the bill, so there's no way the claim can be verified. --Collard 11:40, 24 April 2006 (UTC)The rotary engine does not suffer with higher emissions or poor fuel consumption, in fact with fair comparisons the rotary engine in many cases can be superior to the piston engine for both emissions and fuel consumtion.
Is here the File X Meeting?
This is not better nor poorer as a gasoline piston engine. Effencies for a gasoline piston engine 25~35%!
"A typical production two-rotor Wankel engine does not utilise a bearing between the two rotors, allowing a one-piece eccentric shaft to be used. This tradeoff allows for cheaper manufacture at the expense of peak engine rpm, due to eccentric shaft flex." ouh
The forces extinguish themselves, therefor need a two rotor Wankel no bearing between the rotors. No forces no bearing, a useles bearing is money wasting!
"In engines having more than two rotors, or two rotor race engines intended for high-rpm use, a multi-piece eccentric shaft must be used, allowing additional bearings between rotors. While this approach does increase the complexity of the eccentric shaft design, it has been used successfully in the Mazda's production three-rotor 20B-REW engine, as well as many low volume production race engines." that is not true. The C-111-2 4 Rotor Mercedes Benz eccentric shaft for the KE Serie 70, Typ DB M950 KE409 is made in one piece!
Historie
1957 converted the NSU ingenieur Hanns Dieter Paschke the DKM54 to the rotary piston engine KKM 57P. --80.226.208.196 21:35, 2 July 2006 (UTC)
I feel this should end after oil with a period. The "slighly incresing running costs" feels tacked on and not so neutral.
And reciprocating piston engines does not use oil? For reciprocating piston engines is a oilconsumption of 1L/1000km normally and you must change the entire quantity of oil. --90.187.119.245 22:27, 28 August 2007 (UTC)
"This feature also led to a great deal of interest in the Soviet Union, where high octane gasoline was rare." Soviet Union doesn't exists from 1991... Probably change this to Russian Federation?
One another topic, one approach to improve fuel efficiency has been to shut off the engine at idle time, or shut off part of it when lower power is needed. Another approach is to run the engine at its peak efficiency, charging a battery. Is the rotary engine particularly well- or ill-suited to any of these measures? I couldn't find any references. Belltower 19:21, 13 November 2006 (UTC)
The article contains advantages and disadvantages of the RCE design. These categories are not included in entries for 2 and 4 stroke engines. This seems to imply some sort of inherent design flaw with the Wankel. To give a more balance view and for the sake of consistency I feel this section should be rewritten. Cajun1958 23:27, 18 December 2006 (UTC)
Perhaps the most exotic use of the Wankel design is in the seat belt pretensioner system of the Volkswagen New Beetle. In this car, when deceleration sensors sense a potential crash, small explosive cartridges are triggered electrically and the resulting pressurized gas feeds into tiny Wankel engines which rotate to take up the slack in the seat belt systems, anchoring the driver and passengers firmly in the seat before any collision.
I question the accuracy of this statement. I think I found the patent in question -- http://www.patentstorm.us/patents/5485970-description.html -- which reads :
The motor 40 is not an internal combustion motor, although it is similar in construction to the known "Wankel" engine.
... so I'm not sure if being similar to a wankel engine is enough to call it a wankel engine. Yes, the picture certainly *looks* like one, but is that enough? (Oh, here's a link to the patent that includes a picture -- http://www.google.com/patents?vid=USPAT5485970&id=N6QhAAAAEBAJ&dq=5485970 --= which does look very much like a wankel engine.) dougmc 23:47, 24 January 2007 (UTC)
"Curtis-Wright takes 50% of the license income made in the USA and limited its development activity to a minimum." How could this be. Didn't the patent rights run out years ago? --Gbleem 09:35, 27 January 2007 (UTC)
When a patent expire than need you no license.--90.187.41.54 12:28, 28 March 2007 (UTC)
There is some questionable content in the Materials section: "We used water in a radial or axial cooling system, with the hot water from the hot bow we heated the cold bow. Therefore the thermal expansion remains tolerable." This is either copyvio or original research. meatmanek 23:19, 8 April 2007 (UTC)
In the 60's called we this know-how! I Recommend Richard F. Ansdale S. 127, der Wankelmotor Konstruktion und Wirkungsweise or Wolf Dieter Benzingers Rotary Engines or Kenichi Yamamoto Rotary Engine S.32. --90.187.208.16 17:57, 10 April 2007 (UTC)
What about adding a section on future prospects like the H2RE engine? Here is a link to Mazda's Hydrogen Rotary Links Page http://www.mazda.com/mazdaspirit/rotary/hre/index.html
From the article:
Octane rating lists Hydrogen as a 130 Octane rating. So, one or the other is like incorrect? --Puellanivis 00:55, 23 October 2007 (UTC)
Octan rating for Hydrogen is for RON 130 but for MON only ~50 Octane!--HDP (talk) 06:36, 13 May 2009 (UTC) --HDP 18:33, 14 November 2007 (UTC)
I'm new to Wikipedia, so I won't dare edit. However, after reading that the Volkswagen New Beetle's seat belt pretensioner included a type of wankel motor, I went to a VW salvage and got a used unit from a crashed Beetle. I totally disassembled it, and there is nothing Wankel about it. It is definitely the common "ball and sprocket" type of pretensioner. I suggest the reference to the VW New Beetle be removed or references cited.Dustyattic (talk) 15:26, 30 December 2007 (UTC)
Front or rear? Audi and VW use this seat belt pretensioner only in the front.--HDP (talk) 13:02, 1 January 2008 (UTC)
The animation of the rotary engine has the firing sequence off, it doesn't fire both spark plugs at the same time.
Here is a correction of the animation on how it really fires: [[2]http://www.rotaryengineillustrated.com/wankel-engine-animations/engine-strokes-animation-2.html]
Not really, the Marine Ro135, Mazda Racing Wankel and Rensis fires simultan both spark blubes, this lowers the fuelconsumption. Then fires L before T on a 13BT and 13b-REW only for reasons of exhaust gas emission (lower HC), with the handicap of a higher fuelconsumption. 13B fires L two times (Wastespark) at the 13BT and 13B-REW.--HDP (talk) 16:00, 16 March 2008 (UTC)
There seems to be a mistake on who invented the rotary engine. The engine was actually invented in 1904 by Margaret Knight, who was also the inventor of the paper-bag making machine.
Has everyone forgotten about Dr Walter Froede. The man that patented the KKM engine while working for NSU. Felix Wankel was reported to have been very uphappy with Froede's design and is reported to have said. "These young people always know better and have ruined my whole plan for a real connecting link between the reciprocating piston engine and the turbine... you have made a cart horse out of my race horse". Wankel eventually came around. The name of the engine we see today was once called the NSU/wankel rotary engine Arthur3286 (talk) 16:39, 12 May 2009 (UTC).
Wankel bought the patent from a swede, Olle Petter Karlsson, born 1901 in Jämtland, Sweden. He had constructed the engine before he emigrated to USA and the patent is from 1924. He had economical problems and a german named Wankel bought it. "Ett år i Ås 2008" —Preceding unsigned comment added by 62.63.193.66 (talk) 15:50, 19 May 2009 (UTC)
"However, Mazda chose a method to comply with hydrocarbon emission standards that, while less expensive to produce, increased fuel consumption"
Can someone expand on this? Reading between the lines, I would guess the "method" they used was a pollution pump. Is this correct?
If so, why did this engine suffer from it's ill effects any more than any other engine (like the small-block in my '74 Parisienne)? If it didn't suffer any more than any other engine, why is this always brought up as a particular sore point of this design?
Maury (talk) 21:08, 23 September 2008 (UTC)
I removed the link to "gyroscope combustion motor" since this type of engine has nothing to do with the Wankel principle. —Preceding unsigned comment added by 195.130.159.210 (talk) 11:04, 16 January 2009 (UTC)
The article contains both of the following statements:
"Just as the shape of the Wankel combustion chamber prevents preignition..."
"However, a Wankel engine is extremely susceptible to damage from pre-ignition..."
So, which is it? —Preceding unsigned comment added by Ylandrum (talk • contribs) 21:13, 25 April 2009 (UTC)
This article is or was the subject of a Wiki Education Foundation-supported course assignment. Further details are available on the course page. Student editor(s): Dsettles.
Above undated message substituted from Template:Dashboard.wikiedu.org assignment by PrimeBOT (talk) 12:38, 17 January 2022 (UTC)
The page contains an advanatages section, i was just wondering if there are any disadvantages to the engine? Zephyr 12:30, 1 February 2007 (UTC)
Under "Pistonless rotary engine" there is a discussion of the disadvantages - primarily sealing problems, perhaps that could be incorporated here, or the pages could be merged.
"Worse still, these two sets of seals must somehow join at sharp corners at the ends of the apex seals. " Yeah, therefor invented Felix Wankel the Sealing pin.
"An additional problem is that the seals at the Wankel rotor apexes meet the chamber walls at an angle that varies plus and minus ~26 deg; during the cycle, while a piston ring meets the cylinder walls at a constant angle.
That is probably the largest imbecility. First, without varies angels work no apex seal. This is a function of the k-factor and the aequidistante.
As well as making the seal design itself more difficult, this means that while multiple rings are easily fitted to a piston, a corresponding approach is impossible with the Wankel apex seals.
Completely wrong.
"Another disadvantage of the Wankel engine in particular is the large surface area of the combustion chamber which reperesents a large heat transfer and quench area, combined with an unfavorably long and rather thin stretched combustion space, which means a long flame travel. The combustion is less complete than in, for example, an RPE, which has a more compact chamber shape with smaller area per unit of chamber volume. The Quasiturbine has similar disadvantages with its concave combustion chamber, and in the AC design the sharp angles of the carriers hamper the propagation of the flame front, leading to incomplete combustion"
The geratest myth for ever: The large surface area. An Wankel with a camber volumen of 1,3ltr has a displacment of 2,6ltr. But I have only the losses as 1,3ltr engine. And completely different heat transfer and isolating oil film. Therfore need a Wankel a smaller cooler per kW engine power!!!--90.186.119.176 22:39, 29 March 2007 (UTC)--90.186.119.176 22:38, 29 March 2007 (UTC)
I don't know who wrote the latest disadvantages section, but it was utterly incomprehensible. Due to that reason (it was doing more harm than good to the article, in my opinion), I tried to clean up the grammar and structure a bit, whilst retaining the salient points. Some of the deep technical detail was lost, but if anyone wants to try and explain some of the disadvantages to that level of detail, they should really try to make sure the explanation is excellent. (Sev, 10 Apr 07)
Well, I guess that shows how much sense the previous description made :P Personally, I think talking about ° of opening time for the intake valves is well beyond the scope of this article, and beyond the interest of most. However, a third opinion would be appreciated on this. (Sev, 11 Apr 07)
I'd say speaking about "Duration of admission and expansion strokes", both in terms of degrees of a circle, is a better wording than "duration of intake and exhaust", the Wankel cycle is a four stroke cycle, but is different to the Otto cycle the reciprocating engine uses, and thus its thermodynamic features, advantages and disadvantages come from different sources than in reciprocating piston engines, they're close but never the same.--Jgrosay (talk) 22:17, 29 January 2013 (UTC)
Even after Sev's grammatical corrections this section is still incomprehensible. The intelligible parts send mixed messages at best; the uncited claim that the Wankel's engine is less efficient in general conflicts with Mazda's results. 206.55.189.90 (talk) 05:10, 17 March 2008 (UTC)
Does it really give smooth power at high RPM and low torque, as stated in the opening? The wording ('and' instead of 'but') implies smooth high-rpm power and low torque are either both advantages or both disadvantages. Is low torque an advantage or disadvantage? I would think that for an engine used in sports cars, low torque would be a disadvantage. 206.53.197.24 (talk) 22:53, 11 December 2008 (UTC)
Then must a Forml-1 engine be a loser, torque around 185 NM. When you need torque then must you drive a Diesel truck and not a sports car! HP is HP! The engine torque is uninteresting. Only the torque on the wheel interested, 300HP is always 300HP! P= 2*Pi*n*m!!! High engine torque caused excessive wheigt, make a heavy engine, heavy gerabox, heavy cardan shaft, heavy transfer gearbox etc. Then is only the eccentric shaft high revving, the rotor revving with 1/3 of the eccentric shaft revs. --HDP (talk) 18:12, 12 December 2008 (UTC)
The section marked "disadvantages" does not discuss disadvantages, and principally contains a technical discussion that belongs elsewhere. The information in this discussion is helpful but is not present in the disadvantages section of the article.Andyberks (talk) 21:07, 16 June 2010 (UTC)
Cite #30 hardly seems scientific, and is used to validate the following claim:
I feel that unless you take a vehicle, drop the engine, put in a modern rotary, then put in a V8, and perform tests on both (so everything else but the engine is the same) you are comparing apples and oranges. I think the above claim should be reworded to clarify this, or a better, more scientific, source found. —Preceding unsigned comment added by 72.33.0.163 (talk) 15:04, 16 July 2010 (UTC)
If looks like fans of this engine are trying to say there are no disadvantages. If so, it's had over 50 years to catch on and take over the internal combustion engine market but there are no, or almost no, cars using it??? foobar (talk) 10:01, 29 January 2016 (UTC)
Not much is mentioned about using diesel wankel engines. Does the generally low compression ratio make wankels unviable modern vehicles? Should it be mentioned if that's true? Scott Paeth 03:07, 22 August 2007 (UTC)
There were also single stage compression ignition Wankel engines, but it seems it proved difficult to start and tune; regarding the issue of Specific Fuel Consumption of RCEs and reciprocating engines, early RCEs reached SFCs of around 280 gr/hp/hr, not too different from series engines in common cars, but somehow higher than in the best reciprocating piston engines ever, the engines with distribution by Single Sleeve Valve, that in the hands of Harry Ricardo and Mike Hewland gave SFCs of around 190 gr/hp/hr; but SFC has been improving constantly over time in RCEs, and the SFC at the rpm zone of best Volumetric Efficiency and best torque that is where good SFC figures for reciprocating engines are obtained, may differ in an important proportion to the fuel economy in actual conditions of use, and in a not so favorable rpm regime, also, it's not the same an engine designed for a constant or near constant rpm range, such as for an electric generator or an airplane, that is going to run most of time at the cruise speed, than an engine intended for an street car use.--Jgrosay (talk) 22:33, 29 January 2013 (UTC)
"Wankel engines have several major advantages over reciprocating piston designs, in addition to having higher output for similar displacement and physical size"
I've heard, in both aviation and automotive articles, that the Wankel can be characterized as having "one third less power, but one half the weight". The statement above suggests otherwise. Can someone explain why the specific power is higher, and perhaps give a characterization like the one I had heard before?
Maury —Preceding unsigned comment added by Maury Markowitz (talk • contribs) 12:38, August 27, 2007 (UTC)
Doubts may come from the way engine displacement in Wankel RCEs is stated; some used the displacement of a single chamber multiplied by the number of rotors, other used the displacement of a single chamber multiplied by 3 and multiplied by the number of rotors, the most widespread approach would be 2 times the displacement of one chamber multiplied by the number of rotors, and the Japanese taxation authorities seem using the displacement of one chamber multiplied by 1.5 and multiplied by the number of rotors to rate taxes in Wankel RCEs, the way you use to express the displacement of a Wankel RCE may have a big influence in the image people gets about the RCE performance compared to a reciprocating piston engine, where total engine displacement is displacement of one cylinder multiplied by the number of cylinders; the 2 times the chamber volume multiplied by the number of rotors looks like a reasonable approach to the subject of RCE displacement calculations.--Jgrosay (talk) 22:43, 29 January 2013 (UTC)
Just a nit to pick on the animation. The ignition cycle does not show red in all cases. Jokem (talk) 17:29, 20 July 2009 (UTC)
At the eCarTec in Munich October 13 to 15th 2009 in Munich, the first international fair for electric mobility was a Fiat 500 converted to a plug-in hybrid shown. Small cars like this are expected to drive 90% in electric only mode. So for the few usage of the range extender, the little less efficiency of the wankel is not so important. Important is low weight and small size. Here a photo --Pege.founder (talk) 10:16, 24 October 2009 (UTC)
The absence of any mention of the debate about the displacement of a Wankel engine destroys any notion that this article has a neutral POV. For example: the 1.3 figure for mazda's 13B engines only counts one side of each rotor. When i was first learned this i was awestruck that they would say such a thing because i assumed (naively) that they wound count all three sides of each rotor since all three sides are simultaneously producing power. Other people I've spoken to about this have compared it to only counting two cylinders of a V8.
I realize that the displacement calculation makes no difference as to the actual size or weight of the engine or on the output of the engine. Wikipedia should include this in the interest clarity. If figures are given that include a "Rotary Equivalence" or "conversion" factor, that should be noted. But just saying "1.3 liters" is carrying on deliberate obtuseness that is inappropriate for Wikipedia. see http://www.hemmings.com/hsx/stories/2008/04/01/hmn_feature11.html Grabba (talk) 16:50, 1 February 2010 (UTC)
You say Wankels should be compared on a power to weight basis. Then go to quote horsepower per liter numbers. Anyone familiar with the various designs and material makeups of an engine will know that the displacement of an engine does not reflect its weight. 5.7-7.0 liter Aluminum block and head 3rd and 4th generation Small Block Chevy's weigh approximately 458lbs and produce anywhere from 310-505hp, a late model Wankel (series 6, 7, or 8 RX-7 13b-rew, aluminum and iron housings) weighs approximately 410lbs and produces anywhere from 255 to 280hp. The 2.6 liter RB26DETT and 3.0 liter 2jz-det both weigh around 600-700lbs and produce 280-320hp. Clearly engine type (V8, rotary, Inline six) and material (aluminum, iron) has more bearing on the total weight of the engine than its swept displacement. Also, by inciting hp per liter you are simply taking the discussion back to what formula should be used to calculate the displacement of a rotary. 280hp/1.3 liters (~215hp/l) is clearly an incorrect comparison measure, as is 255hp/3.9 liters (~65hp/l). If compared simply by power to weight, clearly the chevy pushrod V8's come out on top regardless of what displacement measure you us for the rotary. —Preceding unsigned comment added by Li7in6 (talk • contribs) 00:05, 9 November 2010 (UTC)
Look: Mazda RX-8 won "engine of the year award 2003" in the category 2.5 - 3 litre displacement. --Minzoblate (talk) 15:32, 25 November 2020 (UTC)
The article mentions surface to volume ratio without any mention of why it is an important consideration either as a positive or as a negative. This is confusing. EdEveridge (talk) 18:25, 3 February 2010 (UTC)
One sentence says that wankels have not been used for racing since the 80s. Next we are told that norton raced (and won) with one at the IOM TT in 1991. can someone with more time correct the first staement? —Preceding unsigned comment added by 213.122.161.179 (talk) 12:47, 12 August 2010 (UTC)
There is something wrong with a "1 mm" diameter wankel engine with a displacement of "0.1 cc". Possibly it should be 1 cm diameter and 0.1 cm displacement?
Mike Halling, halling@cox.net —Preceding unsigned comment added by 68.8.12.40 (talk) 10:33, 31 August 2010 (UTC)
top says Wankel got first patent in 1929, then a little later the article says he first had the idea around 1951-54. —Preceding unsigned comment added by 173.69.30.47 (talk) 13:56, 15 February 2011 (UTC)
the new approaches to use wankel engine might be mentioned
http://www.autozone99.com/2011/06/mazda-develop-laser-ignition-system-for-future-rotary-engine/
laser ignition for engine ( which, btw effectivly resolves 'size' problem - allowing bigger wankel engines, than ever were built )
another is a ceramic variant which is described here http://www.ultrahardmaterials.co.uk/ceramic_rotary_engine.htm and here http://ceramicrotaryengines.com/ ( I checked - the team of people is the same, though registration is different UK and US respectivly ) they just produced experimental engine - no more, but noneless - something new. SergeyKurdakov (talk) 18:05, 15 July 2011 (UTC)
I removed the following piece of text 'cause it seems like an advertisement:
Ceramic piston rings are available from Kyocera together with ceramic liners and ceramic pistons and are a special (expensive and low-production series) car parts.<ref>Kyocera ceramic car parts (silicon nidride){{cite web|url=http://americas.kyocera.com/kicc/automotive/engines.html |title=Kyocera's advanced ceramic materials }}</ref>
--TiagoTiago (talk) 15:46, 21 March 2012 (UTC)
The Wankel engine is a type of internal combustion engine. In which it uses 3 main components rotors, housings/plates, and an eccentric shaft. The eccentric shaft or lobe goes straight thru the middle of the rotors, which rotate the rotors, which look like triangles. The two rotors are separated by plates and enclosed by housings, which basically closes up the internals to the motor. As the eccentric shaft moves the rotors a four-stroke cycle takes place inside the enclosed motor. As the rotors spin, each chamber on the 3 sides of the “triangle” spinning inside the motor has their own task. Air/fuel mixture is inhaled into the engine by the intake port as the rotor keeps spinning. The next phase is the mixture gets compressed and when it finally makes its way to the spark plugs and the spark plugs spark it ignites the compressed mixture, which builds up pressure quickly forcing the rotor to move even faster which creates power. Just after the spark plugs ignites and moves the rotor the next phase it lets the combustion gases out the exhaust port, which is basically the end of the cycle since the exhaust ports lead to your exhaust, and out the vehicle. So basically each phase is happening at the same time one right after another however the shaft spins three times for every complete revolution for the rotor. • On a side note if you want a better idea to see how the engine works visually you can grab a straw and loop it so that its enclosed looking like a circle/oval shape. Then grab a Dorito chip, since it looks like a triangle, and put it in the closed looped straw and rotate the Dorito and that’s how the internal of the Wankel engine works. — Preceding unsigned comment added by JEV7-NJITWILL (talk • contribs) 22:26, 12 December 2012 (UTC)
SAE seems about to publish two papers with a promising title, in both one of the authors is Mr. Ming-June Hsieh, one is: "The intake and exhaust pipe effect on a Rotary Engine performance", the other: "The numerical investigation on the performance of Rotary Engine with leakage, different fuels and recess sizes". Hope they arrive sooner than later.--Jgrosay (talk) 16:44, 2 January 2013 (UTC)
What is a "No loss" way of lubrication of apex seals and of stator surface in a Wankel engine? Some recent developments, such as the Austro Engines (heirs of MidWest Aeroengines, the company that produced the first aviation engines designed by the Norton team), single rotor 294 cc per chamber engine intended for ultra-light aircraft use and giving 80 HP, uses this approach of "no loss" lubrication.--Jgrosay (talk) 22:06, 29 January 2013 (UTC)
Many people perceive the Wankel engine as finished and a curio. The Wankel engine is still ongoing in R&D and is being taken up more in specialized aircraft applications. A section may be needed to gather all the advances, confirmed R&D and proposed applications and indicate to the reader what may come in the nears future. Most of the info is in the article, which is scattered about. It needs bringing into one section. 94.193.161.81 (talk) 06:34, 31 August 2013 (UTC)
By "specialized" aircraft application you mean EXPERIMENTAL aircraft, where pretty much anything goes because experimental aircraft are severely limited in power, altitude, capacity, weight and performance. All to keep them from getting into airspace where certified aircraft fly in civil and commercial aviation. You could use a giant rubber band to power the prop on an experimental aircraft and it would be "legal" if it met a few other basic requirements. Of course even THOSE requirements are just to make it "airworthy" enough to operate from public airfields, etc. If you fly from a private airstrip, stay out of controlled airspace and don't bother with insurance and such, you don't even need a pilot license of any kind to fly in the U.S. Those that go for "experimental aircraft" acceptance are those that want to show off their new toys at the local airport or don't have access to a private airstrip. So being "accepted" for use in "experimental aircraft" is not a big accomplishment or achievement for Wankel engines. Neither are "proposed applications" which are literally pure speculation about replacing existing piston engines with Wankels. Which is something Wankels have been unable to achieve on any sort of SUCCESSFUL and "mainstream" level throughout their history.
The "near future" for Wankels is about what it was 50 - 60 years ago. A tomorrow that doesn't come. — Preceding unsigned comment added by 68.234.100.60 (talk) 11:54, 30 May 2017 (UTC)
I like Wankel engines and I feel the article editor does too. However fact remains that, even though some poorly designed conventional engines need extensive maintenance below 50,000, Most reciprocating engines continue to function adequately for three times that. Also the Mazda statement is incorrect as Mazda does not currently offer a mass market Rotary engined vehicle. Mazda.com no longer offers a rotary engine option. Fact is that rotary engines are only useful for short lifetime power, like torpedoes. Shjacks45 (talk) 08:00, 26 April 2014 (UTC)
How "rebuildable" a Wankel engine is relies completely on the definition of "rebuild". A piston engine can often be "rebuilt" with just replacing seals and gaskets, too. But that doesn't remove wear and it doesn't return the engine to factory new specifications and performance, which is the standard most PROFESSIONALS demand from an engine "rebuild". You're talking about light-duty engines any time there aren't replaceable cylinder sleeves involved and its a spark-ignition engine. Medium-duty engines have parent-bore cylinders that can be bored and honed and fitted with oversize pistons without affecting cylinder wall thickness enough that flexing and ring seal issues become a problem. Heavy-duty engines have replaceable cylinder liners that are completely replaceable so the engine can literally be RENEWED rather than "rebuilt".
None of the above are possible with a Wankel and 100,000 miles is a long ways from an accomplishment these days when even relatively "cheap" piston engines in the same "displacement" and "power" categories with Wankels will run 200,000 or more. Even then, many "modern" engines aren't even designed to be "rebuilt" at all, because by the time the vehicle and engine reach their designed service life "expectations", they're not worth the time and money to "rebuild". Many have torque-to-yield fasteners for the cylinder head and occasionally the main bearings and connecting rods, they have cylinder bores that can't be bored a useful oversize and the manufacturer doesn't offer oversize pistons, rings, etc.
That's how you determine if the MANUFACTURER thinks its engines are worth "rebuilding". The aftermarket doesn't matter much if you're interested in restoring "like new" performance and reliability. But even the cheapest "throwaway" engines can typically be sleeved back to standard IF someone wants to put the time and money into them. Nothing of the kind is possible with a Wankel and replacing those seals just results in new seals that want a NEW SURFACE FINISH to seat in and seal against in contact with USED and WORN and GLAZED surfaces that are out of spec and where worn will no longer provide proper TENSION for the seals, much less proper sealing. Which is why things like "apex seal lift-off" are a PROBLEM for Wankels to begin with, both worn out AND "rebuilt".
Unless and until somebody comes up with a cost-effective way to return a rotor housing to its new dimensions, tolerances and surface finish and hardness, Wankels can't be "rebuilt" using any PROFESSIONAL definition of the word. Until then its find "good used" parts, machine worn out parts to get a "new" surface finish and used "oversize" seals or do some other Band-Aid repair to "rebuild" them that still doesn't result in like-new performance and efficiency. Until Wankels go 100,000+, can be "rebuilt" by the local machine shop or auto shop and then go back into the vehicle to run ANOTHER 100,000+ with similar or IMPROVED fuel economy, oil consumption, power, etc. they're just throwaway engines.
There's a reason — Preceding unsigned comment added by 68.234.100.60 (talk) 12:09, 30 May 2017 (UTC)
The totally round Wankel design-based motor cycle has 3 intake/exhaust sets, compression is achieved by closing with caps 2 sets at a time in a rotary serial sequence, also we have 3 ignition sets. [totally round is not the official Wankel engine but an lab version of it]
The problems? The engine usually exploads because the ignition sets might get mixed with more fuel than are supposed to, also caps break of.
It doesn't work really well yet. It is a great idea though.
Some scientists tried to used a double Boomerang shape at the beginning with 2D motion, but now we know that we must build the firts 3d motion rotary engine.
A 3d motion rotary engine is like a quantum mechanical particle. You cannot make a simple 2d animation to explain it but a 3d.
It is the best thing we know have in mind, we can trap that 3d moving central part with gears, but many times it breaks. It is a way more complex and delicate design, not so great for simplicity but for academic research that might help simpler engines. A 3d rotary engine does not complet a spin in one period but in 2 or three, it depends on the design.
It is really fun though!
This is really a diamond to look, a rotary engine disigned with spins - like quantum mechanics, so the 3d motion does not return to the same position at once, it has to follow a 3d path.
It breaks and it does not work well. But academic engine research, always allow us understand more stuff, and keep the parts that work well. — Preceding unsigned comment added by 2.84.206.14 (talk) 05:21, 2 July 2014 (UTC)
Much of the section titled 'Design' is lifted word-for-word from this YouTube video:
http://www.youtube.com/watch?v=Z7kj9rO8CgI
posted by ADP Training.
http://www.autodiagnosticsandpublishing.com/
They deserve at least a credit!
109.145.110.160 (talk) 02:06, 7 July 2014 (UTC)
Hello fellow Wikipedians,
I have just added archive links to 7 external links on Wankel engine. Please take a moment to review my edit. If necessary, add {{cbignore}}
after the link to keep me from modifying it. Alternatively, you can add {{nobots|deny=InternetArchiveBot}}
to keep me off the page altogether. I made the following changes:
When you have finished reviewing my changes, please set the checked parameter below to true to let others know.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
Cheers. —cyberbot IITalk to my owner:Online 22:45, 27 August 2015 (UTC)
Hello fellow Wikipedians,
I have just added archive links to one external link on Wankel engine. Please take a moment to review my edit. If necessary, add {{cbignore}}
after the link to keep me from modifying it. Alternatively, you can add {{nobots|deny=InternetArchiveBot}}
to keep me off the page altogether. I made the following changes:
When you have finished reviewing my changes, please set the checked parameter below to true to let others know.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
Cheers.—cyberbot IITalk to my owner:Online 01:55, 6 February 2016 (UTC)
This user has a problem with me. He is deliberately following me. He has no idea of the workings of a Wankel engine (clearly non-technical) and will revert anything I add, getting into a needless edit war. He is adding no value and stopping the article from progressing. He has a problem with me over the Mustang plane article. I intend to change the Mustang article with references. He doesn't like that. He appears to be an American who thinks the Mustang was a 100% US plane. He is quite odd. 2.126.207.30 (talk) 17:23, 24 February 2016 (UTC)
A section on this advance in rotary research has been added. 90.213.129.219 (talk) 10:15, 7 August 2016 (UTC)
I see a problem with the page; it says that something causes a "7 °C (45 °F) reduction" in temperature. This unit conversion is wrong. While it is true that when you look at the thermometer it will read 7 and 45 at the same time, that is for absolute measurements. When the temperature changes by 7C, it changes by 9/5 that amount in F, or 12.6 degrees. I have not applied any edit though because I am not sure which value is correct, C or F. 173.48.141.58 (talk) 13:28, 14 September 2016 (UTC)
Uh, you're making this too complicated at the same time you're oversimplifying it. First of all, the conversion is already done and its correct. 7 degrees C IS 45 degrees F, or very close to it. There's no error to correct. Second, whether its different scales on the same thermometer or different thermometers or outside temp or a DIFFERENCE in temps, 7 celcius is always going to be 45 degrees F. You're getting 12.6 because you're "oversimplifying" the formula by leaving a big part of it out. Fahrenheit IS determined by multiplying Celsius by "9/5" (dividing 9 by 5 results in 1.8 so the use of the fraction is pointless) but you then have to add 32 to the result. Which is why O degrees C is 32 degrees F. And it's why 7 x 1.8 = 12.6 and 12.6 + 32 = 44.6. Which rounds up to 45 degrees F. — Preceding unsigned comment added by 68.234.100.60 (talk) 11:46, 30 May 2017 (UTC)
No, the original complaint was correct. You are confusing absolute measurements with differences. The *absolute* temperature 7 °C is 45 °F, but a *difference* of 7 °C is 12.6 °F. The constant 32 is present in both measurements and is therefore subtracted out when forming the difference. An easy way to show this is to compare the differences between freezing and boiling points of water in C and F scales. 100 °C - 0 °C = 100 °C 212 °F - 32 °F = 180 °F Ratio = 1.8 = 9/5 (and ≠ 9/5 + 32)
Therefore, your comment that "...whether its different scales on the same thermometer or different thermometers or outside temp or a DIFFERENCE in temps, 7 celcius is always going to be 45 degrees F..." is completely false.
Proper use of the "convert" function gives the correct answers. See https://en.wikipedia.org/wiki/Template:Convert#Units_of_difference:_10.C2.A0.C2.B0C_higher.3B_how_much_in_.C2.B0F for correct usage for differences. Article text was edited using method in above link.4.14.62.246 (talk) 13:39, 9 August 2017 (UTC)
To have a section in the article simply stating the truth about Wankel engines in one simple sentence instead of a long list of "advantages" and "disadvantages". That truth is that despite decades and decades of "development", Wankel engines are still right where they began. In "niche" applications that are a tiny percentage of theorized possible "viable" applications and uses for them. That could be summed up simply by saying "Wankel engines are no closer to "mainstream" acceptance and use today than they were several decades ago when first designed and constructed. Plenty of "manufacturers" have plenty of "plans" and "ideas", but to date only one manufacturer (Mazda) has been even remotely "serious" about advancing the technology, and even that manufacturer uses the Wankel "design" in a small fraction of its engine and vehicle production.
Unlike gas turbines, which were similarly promoted and propagandized as panaceas of internal combustion performance, Wankels and their promoters and supporters haven't gotten their reality check yet, and continue to be not only a "solution" to an existing problem, but an increasingly LESS PRACTICAL "solution" to ANY problem. Emission, fuel-economy and noise requirements, limits, regulations, standards and laws are increasingly present in nearly all areas of internal-combustion engine use, as are increased expectations for performance and longevity, which ALSO figure prominently in "sustainability" and "environmental responsibility". And those are all things Wankels, like gas turbines, do very POORLY. It's no one's fault and it's not "hate" or being "close-minded" to acknowledge and discuss that. In fact, being close-minded is IGNORING that reality and letting go of the Wankel dream.
The one thing that is absolutely required for modern engines to meet the goals and expectations and requirements they meet is "tuneability". That means being able to accurately and precisely control what goes INTO the engine, what happens INSIDE the engine and what COMES OUT so that OTHER technologies can be "tuned" to deal with the emissions that invariably result and accessory systems and other components and parts can also be designed and developed and "tuned" to create a holistic "system approach" to getting to those goals, expectations and requirements. Wankels just don't cut it, and tons of resources and BRAIN POWER are wasted trying to "prove" what the free markets AND government intervention in economies and industries have already proved impractical and have cast aside. Let Mazda come out with yet another "generation" of low-production, "high-performance" sports cars with rotary engines that either skirt or barely meet emissions requirements or use "smog credits" and various "loopholes" to be exempt from them and let other "manufacturers" produce THEIR "Wankel miracles". That won't change the fact that as a "mainstream" technology, Wankels are a flop. — Preceding unsigned comment added by 68.234.100.60 (talk) 11:31, 30 May 2017 (UTC)
I don't know what you have against gas turbines, but they're almost maintenance-free and work quite efficiently, particularly compound and/or with coolant heat use (crops heating, for example). As for the wankel, it's quite safe to say that, commercially viable or not, any research done on it will have positive effects on any ICE. To me, the 13B-MSP was absolutely viable, even if not exactly "outstanding" in the good way (moderately high fuel consumption not adequate for its performance level, but still... that would fit a ND MX-5 quite nicely, just a bit over the 160HP 2000cc as essentially a more exclusive "high tune" version which cost would mainly be due to... taxes because of regulations requiring a target emission level for the whole vehicles mix, measured with a flawed protocol), it wasn't really worse than the recent downsizing trend with stupid people proud of a TC 1000cc engine burning exactly the same amount of fuel as a NA 2000cc engine for the same work done (but advertised a good 30% lower because of the said flawed emission protocol, noting even the 2000cc one can't match its advertised fuel consumption derived from the same test), while being marginally more compact and heavier than a 1400cc engine with 1 or even 2 more cylinders (because of the added weight of the turbo, intercooler, additional fluids and possibly even heavier flywheel to compensate for the spikier torque distribution). By the way, emissions are responsible for part of the increase in fuel consumption... you feel quite bad when a good'ol' 80's carbureted engine doesn't burn more fuel than a "top notch" almost-2020 DI engine of similar power in a similar chassis despite its considerably shorter gear ratios (you could almost remove the 2 last gears of contemporary 6-speed gearboxes to be fair). — Preceding unsigned comment added by 2A01:CB11:13:D700:3C4D:8FAC:C381:225C (talk) 01:27, 10 June 2017 (UTC)
The intro goes on about how the Wankel is "Smooth because there are three power strokes per revolution". No, it's smooth because there are no reciprocating parts. This is totally misleading. Yes, there are three power strokes per ROTOR rev, but since the actual OUTPUT spins three times this rate, for each ECCENTRIC SHAFT (ie crank) revolution, there is only ONE power stroke, as can be seen in the animation on this very page. Look at "A", the rotor, and "B", the eccentric: B completes three revs for each rev of the rotor. Each time a face goes "bang", the output shaft spins once, one full 360deg revolution. Simple. This is why you only measure ONE face as the displacement, otherwise you'd be including the 2/3rds of the engine that aren't working for each eccentric rev (something like calling a 2.0L 4-stroke a "2.0L" even though only one liter is actually creating output for each rev. A 1.3L Wankel is roughly the same as a 1.3L 2-stroke. I'm kind of shocked the intro to the article has it so wrong, or very misleading at least. There is a REASON they only chose to measure rotaries as the size of ONE face, and it' not because there was some big conspiracy, its because it was the way that made sense! AnnaGoFast (talk) 02:24, 29 August 2017 (UTC)
A section for Cooling is needed. It needs to be a sub-section in Engineering. The info is there it just needs organising. I will do this within the next few weeks. 90.195.174.67 (talk) 11:15, 7 May 2018 (UTC)
Each fact is not necessarily referenced with an appropriate citation, many facts could use addition references. Yes the entire article is relevant. All information revolves around the engine and it’s concepts, advantages and disadvantages, and history/applications. The article is current as far as I am aware, outside searching seems to return similar information as the article. The most recent addition to article was most likely the engines use as a rotary/hybrid, and is discussed on the talk page.
Kkuffelroy1 (talk) 06:21, 28 March 2019 (UTC)
Added a new section on SPCCI advances being adopted by rotary engines. 2A01:4B00:881D:3700:F581:7D0F:ADCE:E437 (talk) 11:33, 24 April 2019 (UTC)
All passages put into one section 2A01:4B00:881D:3700:F581:7D0F:ADCE:E437 (talk) 16:14, 24 April 2019 (UTC)