View text source at Wikipedia


Template:Infobox nihonium

Nihonium, 113Nh
Nihonium
Pronunciation/nɪˈhniəm/ (nih-HOH-nee-əm)
Mass number[286]
Nihonium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Tl

Nh

coperniciumnihoniumflerovium
Atomic number (Z)113
Groupgroup 13 (boron group)
Periodperiod 7
Block  p-block
Electron configuration[Rn] 5f14 6d10 7s2 7p1 (predicted)[1]
Electrons per shell2, 8, 18, 32, 32, 18, 3 (predicted)
Physical properties
Phase at STPsolid (predicted)[1][2][3]
Melting point700 K ​(430 °C, ​810 °F) (predicted)[1]
Boiling point1430 K ​(1130 °C, ​2070 °F) (predicted)[1][4]
Density (near r.t.)16 g/cm3 (predicted)[4]
Heat of fusion7.61 kJ/mol (extrapolated)[3]
Heat of vaporization130 kJ/mol (predicted)[2][4]
Atomic properties
Oxidation statescommon: (none)
Ionization energies
  • 1st: 704.9 kJ/mol (predicted)[1]
  • 2nd: 2240 kJ/mol (predicted)[4]
  • 3rd: 3020 kJ/mol (predicted)[4]
  • (more)
Atomic radiusempirical: 170 pm (predicted)[1]
Covalent radius172–180 pm (extrapolated)[3]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for nihonium

(predicted)[5][6]
CAS Number54084-70-7
History
NamingAfter Japan (Nihon in Japanese)
DiscoveryRiken (Japan, first undisputed claim 2004)
JINR (Russia) and Livermore (US, first announcement 2003)
Isotopes of nihonium
Main isotopes[7] Decay
abun­dance half-life (t1/2) mode pro­duct
278Nh synth 2.0 ms α 274Rg
282Nh synth 61 ms α 278Rg
283Nh synth 123 ms α 279Rg
284Nh synth 0.90 s α 280Rg
ε 284Cn
285Nh synth 2.1 s α 281Rg
SF
286Nh synth 9.5 s α 282Rg
287Nh synth 5.5 s?[8] α 283Rg
290Nh synth 2 s?[9] α 286Rg
 Category: Nihonium
| references
Nh · Nihonium
Cn ←

ibox Cn

iso
113
Nh  [e]
IB-Nh [e]
IBisos [e]
→ Fl

ibox Fl

indexes by PT (page)
child table, as reused in {IB-Nh}
Main isotopes of nihonium
Main isotopes[7] Decay
abun­dance half-life (t1/2) mode pro­duct
278Nh synth 2.0 ms α 274Rg
282Nh synth 61 ms α 278Rg
283Nh synth 123 ms α 279Rg
284Nh synth 0.90 s α 280Rg
ε 284Cn
285Nh synth 2.1 s α 281Rg
SF
286Nh synth 9.5 s α 282Rg
287Nh synth 5.5 s?[8] α 283Rg
290Nh synth 2 s?[9] α 286Rg
Data sets read by {{Infobox element}}
Name and identifiers
Symbol etymology (11 non-trivial)
Top image (caption, alt)
Pronunciation
Allotropes (overview)
Group (overview)
Period (overview)
Block (overview)
Natural occurrence
Phase at STP
Oxidation states
Spectral lines image
Electron configuration (cmt, ref)
Isotopes
Standard atomic weight
  most stable isotope
Wikidata
Wikidata *
* Not used in {{Infobox element}} (2023-01-01)
See also {{Index of data sets}} · Cat:data sets (46) · (this table: )

References

  1. ^ a b c d e f Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  2. ^ a b Seaborg, Glenn T. (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16.
  3. ^ a b c Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  4. ^ a b c d e Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  5. ^ Keller, O. L. Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W. Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead". The Journal of Physical Chemistry. 74 (5): 1127−1134. doi:10.1021/j100700a029.
  6. ^ Atarah, Samuel A.; Egblewogbe, Martin N. H.; Hagoss, Gebreyesus G. (2020). "First principle study of the structural and electronic properties of Nihonium". MRS Advances: 1–9. doi:10.1557/adv.2020.159.
  7. ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  8. ^ a b Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
  9. ^ a b Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.