View text source at Wikipedia
This article needs additional citations for verification. (May 2015) |
In number theory, an unusual number is a natural number n whose largest prime factor is strictly greater than .
A k-smooth number has all its prime factors less than or equal to k, therefore, an unusual number is non--smooth.
All prime numbers are unusual. For any prime p, its multiples less than p2 are unusual, that is p, ... (p-1)p, which have a density 1/p in the interval (p, p2).
The first few unusual numbers are
The first few non-prime (composite) unusual numbers are
If we denote the number of unusual numbers less than or equal to n by u(n) then u(n) behaves as follows:
n | u(n) | u(n) / n |
10 | 6 | 0.6 |
100 | 67 | 0.67 |
1000 | 715 | 0.72 |
10000 | 7319 | 0.73 |
100000 | 73322 | 0.73 |
1000000 | 731660 | 0.73 |
10000000 | 7280266 | 0.73 |
100000000 | 72467077 | 0.72 |
1000000000 | 721578596 | 0.72 |
Richard Schroeppel stated in the HAKMEM (1972), Item #29[1] that the asymptotic probability that a randomly chosen number is unusual is ln(2). In other words: