View text source at Wikipedia


Closed range theorem

In the mathematical theory of Banach spaces, the closed range theorem gives necessary and sufficient conditions for a closed densely defined operator to have closed range.

The theorem was proved by Stefan Banach in his 1932 Théorie des opérations linéaires.

Statement

[edit]

Let and be Banach spaces, a closed linear operator whose domain is dense in and the transpose of . The theorem asserts that the following conditions are equivalent:

Where and are the null space of and , respectively.

Note that there is always an inclusion , because if and , then . Likewise, there is an inclusion . So the non-trivial part of the above theorem is the opposite inclusion in the final two bullets.

Corollaries

[edit]

Several corollaries are immediate from the theorem. For instance, a densely defined closed operator as above has if and only if the transpose has a continuous inverse. Similarly, if and only if has a continuous inverse.

Sketch of proof

[edit]

Since the graph of T is closed, the proof reduces to the case when is a bounded operator between Banach spaces. Now, factors as . Dually, is

Now, if is closed, then it is Banach and so by the open mapping theorem, is a topological isomorphism. It follows that is an isomorphism and then . (More work is needed for the other implications.)

References

[edit]